Tailor3D: Customized 3D Assets Editing and Generation with Dual-Side Images
- URL: http://arxiv.org/abs/2407.06191v1
- Date: Mon, 8 Jul 2024 17:59:55 GMT
- Title: Tailor3D: Customized 3D Assets Editing and Generation with Dual-Side Images
- Authors: Zhangyang Qi, Yunhan Yang, Mengchen Zhang, Long Xing, Xiaoyang Wu, Tong Wu, Dahua Lin, Xihui Liu, Jiaqi Wang, Hengshuang Zhao,
- Abstract summary: Tailor3D is a novel pipeline that creates customized 3D assets from editable dual-side images.
It provides a user-friendly, efficient solution for editing 3D assets, with each editing step taking only seconds to complete.
- Score: 72.70883914827687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in 3D AIGC have shown promise in directly creating 3D objects from text and images, offering significant cost savings in animation and product design. However, detailed edit and customization of 3D assets remains a long-standing challenge. Specifically, 3D Generation methods lack the ability to follow finely detailed instructions as precisely as their 2D image creation counterparts. Imagine you can get a toy through 3D AIGC but with undesired accessories and dressing. To tackle this challenge, we propose a novel pipeline called Tailor3D, which swiftly creates customized 3D assets from editable dual-side images. We aim to emulate a tailor's ability to locally change objects or perform overall style transfer. Unlike creating 3D assets from multiple views, using dual-side images eliminates conflicts on overlapping areas that occur when editing individual views. Specifically, it begins by editing the front view, then generates the back view of the object through multi-view diffusion. Afterward, it proceeds to edit the back views. Finally, a Dual-sided LRM is proposed to seamlessly stitch together the front and back 3D features, akin to a tailor sewing together the front and back of a garment. The Dual-sided LRM rectifies imperfect consistencies between the front and back views, enhancing editing capabilities and reducing memory burdens while seamlessly integrating them into a unified 3D representation with the LoRA Triplane Transformer. Experimental results demonstrate Tailor3D's effectiveness across various 3D generation and editing tasks, including 3D generative fill and style transfer. It provides a user-friendly, efficient solution for editing 3D assets, with each editing step taking only seconds to complete.
Related papers
- MvDrag3D: Drag-based Creative 3D Editing via Multi-view Generation-Reconstruction Priors [19.950368071777092]
Existing 3D drag-based editing methods fall short in handling significant topology changes or generating new textures across diverse object categories.
We introduce MVDrag3D, a novel framework for more flexible and creative drag-based 3D editing.
We show that MVDrag3D provides a precise, generative, and flexible solution for 3D drag-based editing.
arXiv Detail & Related papers (2024-10-21T17:59:53Z) - Layout-your-3D: Controllable and Precise 3D Generation with 2D Blueprint [61.25279122171029]
We present a framework that allows controllable and compositional 3D generation from text prompts.
Our approach leverages 2D layouts as a blueprint to facilitate precise and plausible control over 3D generation.
arXiv Detail & Related papers (2024-10-20T13:41:50Z) - Chat-Edit-3D: Interactive 3D Scene Editing via Text Prompts [76.73043724587679]
We propose a dialogue-based 3D scene editing approach, termed CE3D.
Hash-Atlas represents 3D scene views, which transfers the editing of 3D scenes onto 2D atlas images.
Results demonstrate that CE3D effectively integrates multiple visual models to achieve diverse editing visual effects.
arXiv Detail & Related papers (2024-07-09T13:24:42Z) - DragGaussian: Enabling Drag-style Manipulation on 3D Gaussian Representation [57.406031264184584]
DragGaussian is a 3D object drag-editing framework based on 3D Gaussian Splatting.
Our contributions include the introduction of a new task, the development of DragGaussian for interactive point-based 3D editing, and comprehensive validation of its effectiveness through qualitative and quantitative experiments.
arXiv Detail & Related papers (2024-05-09T14:34:05Z) - Reference-Based 3D-Aware Image Editing with Triplanes [15.222454412573455]
Generative Adversarial Networks (GANs) have emerged as powerful tools for high-quality image generation and real image editing by manipulating their latent spaces.
Recent advancements in GANs include 3D-aware models such as EG3D, which feature efficient triplane-based architectures capable of reconstructing 3D geometry from single images.
This study addresses this gap by exploring and demonstrating the effectiveness of the triplane space for advanced reference-based edits.
arXiv Detail & Related papers (2024-04-04T17:53:33Z) - View-Consistent 3D Editing with Gaussian Splatting [50.6460814430094]
View-consistent Editing (VcEdit) is a novel framework that seamlessly incorporates 3DGS into image editing processes.
By incorporating consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency.
arXiv Detail & Related papers (2024-03-18T15:22:09Z) - Image Sculpting: Precise Object Editing with 3D Geometry Control [33.9777412846583]
Image Sculpting is a new framework for editing 2D images by incorporating tools from 3D geometry and graphics.
It supports precise, quantifiable, and physically-plausible editing options such as pose editing, rotation, translation, 3D composition, carving, and serial addition.
arXiv Detail & Related papers (2024-01-02T18:59:35Z) - SHAP-EDITOR: Instruction-guided Latent 3D Editing in Seconds [73.91114735118298]
Shap-Editor is a novel feed-forward 3D editing framework.
We demonstrate that direct 3D editing in this space is possible and efficient by building a feed-forward editor network.
arXiv Detail & Related papers (2023-12-14T18:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.