The US Algorithmic Accountability Act of 2022 vs. The EU Artificial Intelligence Act: What can they learn from each other?
- URL: http://arxiv.org/abs/2407.06234v1
- Date: Sun, 7 Jul 2024 12:31:13 GMT
- Title: The US Algorithmic Accountability Act of 2022 vs. The EU Artificial Intelligence Act: What can they learn from each other?
- Authors: Jakob Mokander, Prathm Juneja, David Watson, Luciano Floridi,
- Abstract summary: The US AAA is a pragmatic approach to balancing the benefits and risks of automated decision systems.
Yet there is still room for improvement.
This commentary highlights how the US AAA can both inform and learn from the European Artificial Intelligence Act.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: On the whole, the U.S. Algorithmic Accountability Act of 2022 (US AAA) is a pragmatic approach to balancing the benefits and risks of automated decision systems. Yet there is still room for improvement. This commentary highlights how the US AAA can both inform and learn from the European Artificial Intelligence Act (EU AIA).
Related papers
- Taking AI Welfare Seriously [0.5617572524191751]
We argue that there is a realistic possibility that some AI systems will be conscious and/or robustly agentic in the near future.
It is an issue for the near future, and AI companies and other actors have a responsibility to start taking it seriously.
arXiv Detail & Related papers (2024-11-04T17:57:57Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - The Role of Social Movements, Coalitions, and Workers in Resisting
Harmful Artificial Intelligence and Contributing to the Development of
Responsible AI [0.0]
Coalitions in all sectors are acting worldwide to resist hamful applications of AI.
There are biased, wrongful, and disturbing assumptions embedded in AI algorithms.
Perhaps one of the greatest contributions of AI will be to make us understand how important human wisdom truly is in life on earth.
arXiv Detail & Related papers (2021-07-11T18:51:29Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
This survey explores the threat of offensive AI on organizations.
First, we discuss how AI changes the adversary's methods, strategies, goals, and overall attack model.
Then, through a literature review, we identify 33 offensive AI capabilities which adversaries can use to enhance their attacks.
arXiv Detail & Related papers (2021-06-30T01:03:28Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
Technologists and AI researchers have a responsibility to develop trustworthy AI systems.
To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness.
arXiv Detail & Related papers (2021-01-01T17:34:42Z) - AI Failures: A Review of Underlying Issues [0.0]
We focus on AI failures on account of flaws in conceptualization, design and deployment.
We find that AI systems fail on account of omission and commission errors in the design of the AI system.
An AI system is quite likely to fail in situations where, in effect, it is called upon to deliver moral judgments.
arXiv Detail & Related papers (2020-07-18T15:31:29Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.