System stabilization with policy optimization on unstable latent manifolds
- URL: http://arxiv.org/abs/2407.06418v1
- Date: Mon, 8 Jul 2024 21:57:28 GMT
- Title: System stabilization with policy optimization on unstable latent manifolds
- Authors: Steffen W. R. Werner, Benjamin Peherstorfer,
- Abstract summary: The proposed approach stabilizes even complex physical systems from few data samples.
Experiments demonstrate that the proposed approach stabilizes even complex physical systems from few data samples.
- Score: 0.5261718469769449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stability is a basic requirement when studying the behavior of dynamical systems. However, stabilizing dynamical systems via reinforcement learning is challenging because only little data can be collected over short time horizons before instabilities are triggered and data become meaningless. This work introduces a reinforcement learning approach that is formulated over latent manifolds of unstable dynamics so that stabilizing policies can be trained from few data samples. The unstable manifolds are minimal in the sense that they contain the lowest dimensional dynamics that are necessary for learning policies that guarantee stabilization. This is in stark contrast to generic latent manifolds that aim to approximate all -- stable and unstable -- system dynamics and thus are higher dimensional and often require higher amounts of data. Experiments demonstrate that the proposed approach stabilizes even complex physical systems from few data samples for which other methods that operate either directly in the system state space or on generic latent manifolds fail.
Related papers
- Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
Pseudo-label noise is mainly contained in unstable samples in which predictions of most pixels undergo significant variations during self-training.
We introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples.
SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings.
arXiv Detail & Related papers (2024-06-10T21:44:52Z) - Context-aware controller inference for stabilizing dynamical systems
from scarce data [0.0]
This work introduces a data-driven control approach for stabilizing high-dimensional dynamical systems from scarce data.
The proposed context-aware controller inference approach is based on the observation that controllers need to act locally only on the unstable dynamics to stabilize systems.
arXiv Detail & Related papers (2022-07-22T12:41:53Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
We propose a model-based reinforcement learning framework with formal stability guarantees.
The proposed method learns the system dynamics up to a confidence interval using feature representation.
We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system.
arXiv Detail & Related papers (2022-06-03T17:27:04Z) - On the sample complexity of stabilizing linear dynamical systems from
data [0.0]
This work is to show that if a linear dynamical system has dimension (McMillan degree) $n$, there always exist $n$ states from which a stabilizing feedback controller can be constructed.
This finding implies that any linear dynamical system can be stabilized from fewer observed states than the minimal number of states required for learning a model of the dynamics.
arXiv Detail & Related papers (2022-02-28T16:25:00Z) - Joint Learning-Based Stabilization of Multiple Unknown Linear Systems [3.453777970395065]
We propose a novel joint learning-based stabilization algorithm for quickly learning stabilizing policies for all systems understudy.
The presented procedure is shown to be notably effective such that it stabilizes the family of dynamical systems in an extremely short time period.
arXiv Detail & Related papers (2022-01-01T15:30:44Z) - Bayesian Algorithms Learn to Stabilize Unknown Continuous-Time Systems [0.0]
Linear dynamical systems are canonical models for learning-based control of plants with uncertain dynamics.
A reliable stabilization procedure for this purpose that can effectively learn from unstable data to stabilize the system in a finite time is not currently available.
In this work, we propose a novel learning algorithm that stabilizes unknown continuous-time linear systems.
arXiv Detail & Related papers (2021-12-30T15:31:35Z) - Recurrent Neural Network Controllers Synthesis with Stability Guarantees
for Partially Observed Systems [6.234005265019845]
We consider the important class of recurrent neural networks (RNN) as dynamic controllers for nonlinear uncertain partially-observed systems.
We propose a projected policy gradient method that iteratively enforces the stability conditions in the reparametrized space.
Numerical experiments show that our method learns stabilizing controllers while using fewer samples and achieving higher final performance compared with policy gradient.
arXiv Detail & Related papers (2021-09-08T18:21:56Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
We study model-based reinforcement learning (RL) in unknown stabilizable linear dynamical systems.
We propose an algorithm that certifies fast stabilization of the underlying system by effectively exploring the environment.
We show that the proposed algorithm attains $tildemathcalO(sqrtT)$ regret after $T$ time steps of agent-environment interaction.
arXiv Detail & Related papers (2020-07-23T23:06:40Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.