Positive-Unlabelled Learning for Improving Image-based Recommender System Explainability
- URL: http://arxiv.org/abs/2407.06740v1
- Date: Tue, 9 Jul 2024 10:40:31 GMT
- Title: Positive-Unlabelled Learning for Improving Image-based Recommender System Explainability
- Authors: Álvaro Fernández-Campa-González, Jorge Paz-Ruza, Amparo Alonso-Betanzos, Bertha Guijarro-Berdiñas,
- Abstract summary: This work proposes a new explainer training pipeline by leveraging Positive-Unlabelled (PU) Learning techniques.
Experiments show this PU-based approach outperforms the state-of-the-art non-PU method in six popular real-world datasets.
- Score: 2.9748898344267785
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Among the existing approaches for visual-based Recommender System (RS) explainability, utilizing user-uploaded item images as efficient, trustable explanations is a promising option. However, current models following this paradigm assume that, for any user, all images uploaded by other users can be considered negative training examples (i.e. bad explanatory images), an inadvertedly naive labelling assumption that contradicts the rationale of the approach. This work proposes a new explainer training pipeline by leveraging Positive-Unlabelled (PU) Learning techniques to train image-based explainer with refined subsets of reliable negative examples for each user selected through a novel user-personalized, two-step, similarity-based PU Learning algorithm. Computational experiments show this PU-based approach outperforms the state-of-the-art non-PU method in six popular real-world datasets, proving that an improvement of visual-based RS explainability can be achieved by maximizing training data quality rather than increasing model complexity.
Related papers
- Your Image Generator Is Your New Private Dataset [4.09225917049674]
Generative diffusion models have emerged as powerful tools to synthetically produce training data.
This paper proposes the Text-Conditioned Knowledge Recycling pipeline to tackle these challenges.
The pipeline is rigorously evaluated on ten diverse image classification benchmarks.
arXiv Detail & Related papers (2025-04-06T18:46:08Z) - Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.
We introduce novel algorithms for dynamic, instance-level data reweighting.
Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
We show that optimal fair representations possess several useful structural properties.
We then show that these approxing problems can be solved efficiently via concave programming methods.
arXiv Detail & Related papers (2024-09-26T08:46:48Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision.
This approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline.
Our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS.
arXiv Detail & Related papers (2024-07-03T16:33:31Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Robust and Explainable Fine-Grained Visual Classification with Transfer Learning: A Dual-Carriageway Framework [0.799543372823325]
We present an automatic best-suit training solution searching framework, the Dual-Carriageway Framework (DCF)
We validated DCF's effectiveness through experiments with three convolutional neural networks (ResNet18, ResNet34 and Inception-v3)
Results showed fine-tuning pathways outperformed training-from-scratch ones by up to 2.13% and 1.23% on the pre-existing and new datasets, respectively.
arXiv Detail & Related papers (2024-05-09T15:41:10Z) - Transformer-based Clipped Contrastive Quantization Learning for
Unsupervised Image Retrieval [15.982022297570108]
Unsupervised image retrieval aims to learn the important visual characteristics without any given level to retrieve the similar images for a given query image.
In this paper, we propose a TransClippedCLR model by encoding the global context of an image using Transformer having local context through patch based processing.
Results using the proposed clipped contrastive learning are greatly improved on all datasets as compared to same backbone network with vanilla contrastive learning.
arXiv Detail & Related papers (2024-01-27T09:39:11Z) - Self-supervised Learning of Dense Hierarchical Representations for Medical Image Segmentation [2.2265038612930663]
This paper demonstrates a self-supervised framework for learning voxel-wise coarse-to-fine representations tailored for dense downstream tasks.
We devise a training strategy that balances the contributions of features from multiple scales, ensuring that the learned representations capture both coarse and fine-grained details.
arXiv Detail & Related papers (2024-01-12T09:47:17Z) - Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt
Learning with Data-Dependent Prior [14.232144691524528]
Recent Vision-Language Pretrained models have become the backbone for many downstream tasks.
MLE training can lead the context vector to over-fit dominant image features in the training data.
This paper presents a Bayesian-based framework of prompt learning, which could alleviate the overfitting issues on few-shot learning application.
arXiv Detail & Related papers (2024-01-09T10:15:59Z) - Advancing Post Hoc Case Based Explanation with Feature Highlighting [0.8287206589886881]
We propose two general algorithms which can isolate multiple clear feature parts in a test image, and then connect them to the explanatory cases found in the training data.
Results demonstrate that the proposed approach appropriately calibrates a users feelings of 'correctness' for ambiguous classifications in real world data.
arXiv Detail & Related papers (2023-11-06T16:34:48Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Training on Thin Air: Improve Image Classification with Generated Data [28.96941414724037]
Diffusion Inversion is a simple yet effective method to generate diverse, high-quality training data for image classification.
Our approach captures the original data distribution and ensures data coverage by inverting images to the latent space of Stable Diffusion.
We identify three key components that allow our generated images to successfully supplant the original dataset.
arXiv Detail & Related papers (2023-05-24T16:33:02Z) - Self-Supervised Image Representation Learning: Transcending Masking with
Paired Image Overlay [10.715255809531268]
This paper proposes a novel image augmentation technique, overlaying images, which has not been widely applied in self-supervised learning.
The proposed method is evaluated using contrastive learning, a widely used self-supervised learning method that has shown solid performance in downstream tasks.
arXiv Detail & Related papers (2023-01-23T07:00:04Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
We present a novel universal sequence representation learning approach, named UniSRec.
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Our approach can be effectively transferred to new recommendation domains or platforms in a parameter-efficient way.
arXiv Detail & Related papers (2022-06-13T07:21:56Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
Imposing consistency through proxy tasks has been shown to enhance data-driven learning.
This paper introduces novel and effective consistency strategies for optical flow estimation.
arXiv Detail & Related papers (2022-04-14T22:58:30Z) - Integrating Contrastive Learning with Dynamic Models for Reinforcement
Learning from Images [31.413588478694496]
We argue that explicitly improving Markovianity of the learned embedding is desirable.
We propose a self-supervised representation learning method which integrates contrastive learning with dynamic models.
arXiv Detail & Related papers (2022-03-02T14:39:17Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
We investigate the benefit of adding semantic-class positives to instance-based Info Noise Contrastive Estimation training.
We propose a novel self-supervised co-training scheme to improve the popular infoNCE loss.
We evaluate the quality of the learnt representation on two different downstream tasks: action recognition and video retrieval.
arXiv Detail & Related papers (2020-10-19T17:59:01Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.