Window-to-Window BEV Representation Learning for Limited FoV Cross-View Geo-localization
- URL: http://arxiv.org/abs/2407.06861v1
- Date: Tue, 9 Jul 2024 13:48:28 GMT
- Title: Window-to-Window BEV Representation Learning for Limited FoV Cross-View Geo-localization
- Authors: Lei Cheng, Teng Wang, Lingquan Meng, Changyin Sun,
- Abstract summary: We propose a novel Window-to-Window BEV representation learning method, termed W2W-BEV, which adaptively matches BEV queries to ground reference at window-scale.
We demonstrate significant superiority of our W2W-BEV over previous state-of-the-art methods under challenging conditions of unknown orientation and limited FoV.
- Score: 17.388776062997813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-view geo-localization confronts significant challenges due to large perspective changes, especially when the ground-view query image has a limited field of view with unknown orientation. To bridge the cross-view domain gap, we for the first time explore to learn a BEV representation directly from the ground query image. However, the unknown orientation between ground and aerial images combined with the absence of camera parameters led to ambiguity between BEV queries and ground references. To tackle this challenge, we propose a novel Window-to-Window BEV representation learning method, termed W2W-BEV, which adaptively matches BEV queries to ground reference at window-scale. Specifically, predefined BEV embeddings and extracted ground features are segmented into a fixed number of windows, and then most similar ground window is chosen for each BEV feature based on the context-aware window matching strategy. Subsequently, the cross-attention is performed between the matched BEV and ground windows to learn the robust BEV representation. Additionally, we use ground features along with predicted depth information to initialize the BEV embeddings, helping learn more powerful BEV representations. Extensive experimental results on benchmark datasets demonstrate significant superiority of our W2W-BEV over previous state-of-the-art methods under challenging conditions of unknown orientation and limited FoV. Specifically, on the CVUSA dataset with limited Fov of 90 degree and unknown orientation, the W2W-BEV achieve an significant improvement from 47.24% to 64.73 %(+17.49%) in R@1 accuracy.
Related papers
- VQ-Map: Bird's-Eye-View Map Layout Estimation in Tokenized Discrete Space via Vector Quantization [108.68014173017583]
Bird's-eye-view (BEV) map layout estimation requires an accurate and full understanding of the semantics for the environmental elements around the ego car.
We propose to utilize a generative model similar to the Vector Quantized-Variational AutoEncoder (VQ-VAE) to acquire prior knowledge for the high-level BEV semantics in the tokenized discrete space.
Thanks to the obtained BEV tokens accompanied with a codebook embedding encapsulating the semantics for different BEV elements in the groundtruth maps, we are able to directly align the sparse backbone image features with the obtained BEV tokens
arXiv Detail & Related papers (2024-11-03T16:09:47Z) - Improving Bird's Eye View Semantic Segmentation by Task Decomposition [42.57351039508863]
We decompose the original BEV segmentation task into two stages, namely BEV map reconstruction and RGB-BEV feature alignment.
Our approach simplifies the complexity of combining perception and generation into distinct steps, equipping the model to handle intricate and challenging scenes effectively.
arXiv Detail & Related papers (2024-04-02T13:19:45Z) - DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space.
Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored.
We design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features.
arXiv Detail & Related papers (2024-01-13T04:21:24Z) - U-BEV: Height-aware Bird's-Eye-View Segmentation and Neural Map-based Relocalization [81.76044207714637]
Relocalization is essential for intelligent vehicles when GPS reception is insufficient or sensor-based localization fails.
Recent advances in Bird's-Eye-View (BEV) segmentation allow for accurate estimation of local scene appearance.
This paper presents U-BEV, a U-Net inspired architecture that extends the current state-of-the-art by allowing the BEV to reason about the scene on multiple height layers before flattening the BEV features.
arXiv Detail & Related papers (2023-10-20T18:57:38Z) - FB-BEV: BEV Representation from Forward-Backward View Transformations [131.11787050205697]
We propose a novel View Transformation Module (VTM) for Bird-Eye-View (BEV) representation.
We instantiate the proposed module with FB-BEV, which achieves a new state-of-the-art result of 62.4% NDS on the nuScenes test set.
arXiv Detail & Related papers (2023-08-04T10:26:55Z) - Leveraging BEV Representation for 360-degree Visual Place Recognition [14.497501941931759]
This paper investigates the advantages of using Bird's Eye View representation in 360-degree visual place recognition (VPR)
We propose a novel network architecture that utilizes the BEV representation in feature extraction, feature aggregation, and vision-LiDAR fusion.
The proposed BEV-based method is evaluated in ablation and comparative studies on two datasets.
arXiv Detail & Related papers (2023-05-23T08:29:42Z) - Delving into the Devils of Bird's-eye-view Perception: A Review,
Evaluation and Recipe [115.31507979199564]
Learning powerful representations in bird's-eye-view (BEV) for perception tasks is trending and drawing extensive attention both from industry and academia.
As sensor configurations get more complex, integrating multi-source information from different sensors and representing features in a unified view come of vital importance.
The core problems for BEV perception lie in (a) how to reconstruct the lost 3D information via view transformation from perspective view to BEV; (b) how to acquire ground truth annotations in BEV grid; and (d) how to adapt and generalize algorithms as sensor configurations vary across different scenarios.
arXiv Detail & Related papers (2022-09-12T15:29:13Z) - GitNet: Geometric Prior-based Transformation for Birds-Eye-View
Segmentation [105.19949897812494]
Birds-eye-view (BEV) semantic segmentation is critical for autonomous driving.
We present a novel two-stage Geometry Prior-based Transformation framework named GitNet.
arXiv Detail & Related papers (2022-04-16T06:46:45Z) - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View
Images [4.449481309681663]
We present the first end-to-end learning approach for directly predicting dense panoptic segmentation maps in the Bird's-Eye-View (BEV) maps.
Our architecture follows the top-down paradigm and incorporates a novel dense transformer module.
We derive a mathematical formulation for the sensitivity of the FV-BEV transformation which allows us to intelligently weight pixels in the BEV space.
arXiv Detail & Related papers (2021-08-06T17:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.