Hypergraph based Understanding for Document Semantic Entity Recognition
- URL: http://arxiv.org/abs/2407.06904v1
- Date: Tue, 9 Jul 2024 14:35:49 GMT
- Title: Hypergraph based Understanding for Document Semantic Entity Recognition
- Authors: Qiwei Li, Zuchao Li, Ping Wang, Haojun Ai, Hai Zhao,
- Abstract summary: We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
- Score: 65.84258776834524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic entity recognition is an important task in the field of visually-rich document understanding. It distinguishes the semantic types of text by analyzing the position relationship between text nodes and the relation between text content. The existing document understanding models mainly focus on entity categories while ignoring the extraction of entity boundaries. We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time. It can conduct a more detailed analysis of the document text representation analyzed by the upstream model and achieves a better performance of semantic information. We apply this method on the basis of GraphLayoutLM to construct a new semantic entity recognition model HGALayoutLM. Our experiment results on FUNSD, CORD, XFUND and SROIE show that our method can effectively improve the performance of semantic entity recognition tasks based on the original model. The results of HGALayoutLM on FUNSD and XFUND reach the new state-of-the-art results.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
"Detect Any Text" is an advanced paradigm that unifies scene text detection, layout analysis, and document page detection into a cohesive, end-to-end model.
A pivotal innovation in DAT is the across-granularity interactive attention module, which significantly enhances the representation learning of text instances.
Tests demonstrate that DAT achieves state-of-the-art performances across a variety of text-related benchmarks.
arXiv Detail & Related papers (2024-05-30T07:25:23Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - DREQ: Document Re-Ranking Using Entity-based Query Understanding [6.675805308519988]
DREQ is an entity-oriented dense document re-ranking model.
We emphasize the query-relevant entities within a document's representation while simultaneously attenuating the less relevant ones.
We show that DREQ outperforms state-of-the-art neural and non-neural re-ranking methods.
arXiv Detail & Related papers (2024-01-11T14:27:12Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
We propose GraphLM, a novel document understanding model that injects layout knowledge into the model.
We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results.
arXiv Detail & Related papers (2023-08-15T13:53:52Z) - DocTr: Document Transformer for Structured Information Extraction in
Documents [36.1145541816468]
We present a new formulation for structured information extraction from visually rich documents.
It aims to address the limitations of existing IOB tagging or graph-based formulations.
We represent an entity as an anchor word and a bounding box, and represent entity linking as the association between anchor words.
arXiv Detail & Related papers (2023-07-16T02:59:30Z) - SelfDocSeg: A Self-Supervised vision-based Approach towards Document
Segmentation [15.953725529361874]
Document layout analysis is a known problem to the documents research community.
With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain.
We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches.
arXiv Detail & Related papers (2023-05-01T12:47:55Z) - The Devil is in the Details: Evaluating Limitations of Transformer-based
Methods for Granular Tasks [19.099852869845495]
Contextual embeddings derived from transformer-based neural language models have shown state-of-the-art performance for various tasks.
We focus on the problem of textual similarity from two perspectives: matching documents on a granular level, and an abstract level.
We empirically demonstrate, across two datasets from different domains, that despite high performance in abstract document matching as expected, contextual embeddings are consistently (and at times, vastly) outperformed by simple baselines like TF-IDF for more granular tasks.
arXiv Detail & Related papers (2020-11-02T18:41:32Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
We focus on a new practical task, document-scale text content manipulation, which is the opposite of text style transfer.
In detail, the input is a set of structured records and a reference text for describing another recordset.
The output is a summary that accurately describes the partial content in the source recordset with the same writing style of the reference.
arXiv Detail & Related papers (2020-02-24T12:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.