An Attempt to Devise a Pairwise Ising-Type Maximum Entropy Model Integrated Cost Function for Optimizing SNN Deployment
- URL: http://arxiv.org/abs/2407.07014v2
- Date: Thu, 11 Jul 2024 00:15:32 GMT
- Title: An Attempt to Devise a Pairwise Ising-Type Maximum Entropy Model Integrated Cost Function for Optimizing SNN Deployment
- Authors: Wanhong Huang,
- Abstract summary: A spiking neural network (SNN) deployment process often involves partitioning the neural network onto processing units within the neuromorphic hardware.
Finding optimal deployment schemes is an NP-hard problem.
These objectives require consideration of network dynamics shaped by neuron activity patterns.
Our approach focuses on network dynamics, which are hardware-independent and can be modeled separately from specific hardware configurations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment process of a spiking neural network (SNN) often involves partitioning the neural network and mapping these partitions onto processing units within the neuromorphic hardware. Finding optimal deployment schemes is an NP-hard problem. Optimizing these schemes presents challenges, particular in devising computationally effective cost functions optimization objectives such as communication time consumption and energy efficiency. These objectives require consideration of network dynamics shaped by neuron activity patterns, demanding intricate mathematical analyses or simulations for integrating them into a cost model for SNN development. Our approach focuses on network dynamics, which are hardware-independent and can be modeled separately from specific hardware configurations. We employ a pairwise Ising-type maximum entropy model, which is a model show effective in accurately capturing pairwise correlations among system components in a collaborative system. On top of this model, we incorporates hardware and network structure-specific factors to devise a cost function. We conducted an extremely preliminary investigation using the SpiNNaker machine. We show that the ising model training can also be computationally complex. Currently, we lack sufficient evidence to substantiate the effectiveness of our proposed methods. Further efforts is needed to explore integrating network dynamics into SNN deployment.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
Spiking Neural Networks (SNNs) are inspired by the sparse and event-driven nature of biological neural processing, and offer the potential for ultra-low-power artificial intelligence.
We explore the hardware-software co-design of sparse SNNs, examining how sparsity representation, hardware architectures, and training techniques influence hardware efficiency.
Our work aims to illuminate the path towards embedded neuromorphic systems that fully exploit the computational advantages of sparse SNNs.
arXiv Detail & Related papers (2024-08-26T17:22:11Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Understanding the Functional Roles of Modelling Components in Spiking Neural Networks [9.448298335007465]
Spiking neural networks (SNNs) are promising in achieving high computational efficiency with biological fidelity.
We investigate the functional roles of key modelling components, leakage, reset, and recurrence, in leaky integrate-and-fire (LIF) based SNNs.
Specifically, we find that the leakage plays a crucial role in balancing memory retention and robustness, the reset mechanism is essential for uninterrupted temporal processing and computational efficiency, and the recurrence enriches the capability to model complex dynamics at a cost of robustness degradation.
arXiv Detail & Related papers (2024-03-25T12:13:20Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Split-Et-Impera: A Framework for the Design of Distributed Deep Learning
Applications [8.434224141580758]
Split-Et-Impera determines the set of the best-split points of a neural network based on deep network interpretability principles.
It performs a communication-aware simulation for the rapid evaluation of different neural network rearrangements.
It suggests the best match between the quality of service requirements of the application and the performance in terms of accuracy and latency time.
arXiv Detail & Related papers (2023-03-22T13:00:00Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - JMSNAS: Joint Model Split and Neural Architecture Search for Learning
over Mobile Edge Networks [23.230079759174902]
Joint model split and neural architecture search (JMSNAS) framework is proposed to automatically generate and deploy a DNN model over a mobile edge network.
Considering both the computing and communication resource constraints, a computational graph search problem is formulated.
Experiment results confirm the superiority of the proposed framework over the state-of-the-art split machine learning design methods.
arXiv Detail & Related papers (2021-11-16T03:10:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.