ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction
- URL: http://arxiv.org/abs/2407.07077v1
- Date: Tue, 9 Jul 2024 17:50:28 GMT
- Title: ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction
- Authors: Shaozhe Hao, Kai Han, Zhengyao Lv, Shihao Zhao, Kwan-Yee K. Wong,
- Abstract summary: We introduce a novel task named Unsupervised Concept Extraction (UCE) that considers an unsupervised setting without any human knowledge of the concepts.
Given an image that contains multiple concepts, the task aims to extract and recreate individual concepts solely relying on the existing knowledge from pretrained diffusion models.
We present ConceptExpress that tackles UCE by unleashing the inherent capabilities of pretrained diffusion models in two aspects.
- Score: 20.43411883845885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While personalized text-to-image generation has enabled the learning of a single concept from multiple images, a more practical yet challenging scenario involves learning multiple concepts within a single image. However, existing works tackling this scenario heavily rely on extensive human annotations. In this paper, we introduce a novel task named Unsupervised Concept Extraction (UCE) that considers an unsupervised setting without any human knowledge of the concepts. Given an image that contains multiple concepts, the task aims to extract and recreate individual concepts solely relying on the existing knowledge from pretrained diffusion models. To achieve this, we present ConceptExpress that tackles UCE by unleashing the inherent capabilities of pretrained diffusion models in two aspects. Specifically, a concept localization approach automatically locates and disentangles salient concepts by leveraging spatial correspondence from diffusion self-attention; and based on the lookup association between a concept and a conceptual token, a concept-wise optimization process learns discriminative tokens that represent each individual concept. Finally, we establish an evaluation protocol tailored for the UCE task. Extensive experiments demonstrate that ConceptExpress is a promising solution to the UCE task. Our code and data are available at: https://github.com/haoosz/ConceptExpress
Related papers
- How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
We propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM)
It can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner.
Experiments validate that our CIDM surpasses existing custom diffusion models.
arXiv Detail & Related papers (2024-10-23T06:47:29Z) - CusConcept: Customized Visual Concept Decomposition with Diffusion Models [13.95568624067449]
We propose a two-stage framework, CusConcept, to extract customized visual concept embedding vectors.
In the first stage, CusConcept employs a vocabularies-guided concept decomposition mechanism.
In the second stage, joint concept refinement is performed to enhance the fidelity and quality of generated images.
arXiv Detail & Related papers (2024-10-01T04:41:44Z) - Concept Conductor: Orchestrating Multiple Personalized Concepts in Text-to-Image Synthesis [14.21719970175159]
Concept Conductor is designed to ensure visual fidelity and correct layout in multi-concept customization.
We present a concept injection technique that employs shape-aware masks to specify the generation area for each concept.
Our method supports the combination of any number of concepts and maintains high fidelity even when dealing with visually similar concepts.
arXiv Detail & Related papers (2024-08-07T08:43:58Z) - Non-confusing Generation of Customized Concepts in Diffusion Models [135.4385383284657]
We tackle the common challenge of inter-concept visual confusion in compositional concept generation using text-guided diffusion models (TGDMs)
Existing customized generation methods only focus on fine-tuning the second stage while overlooking the first one.
We propose a simple yet effective solution called CLIF: contrastive image-language fine-tuning.
arXiv Detail & Related papers (2024-05-11T05:01:53Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
We show that present SOTA concept learning approaches suffer from two major problems - lack of concept fidelity and limited concept interoperability.
We propose a novel self-explaining architecture for concept learning across domains.
We demonstrate the efficacy of our proposed approach over current SOTA concept learning approaches on four widely used real-world datasets.
arXiv Detail & Related papers (2024-05-01T06:50:18Z) - Visual Concept-driven Image Generation with Text-to-Image Diffusion Model [65.96212844602866]
Text-to-image (TTI) models have demonstrated impressive results in generating high-resolution images of complex scenes.
Recent approaches have extended these methods with personalization techniques that allow them to integrate user-illustrated concepts.
However, the ability to generate images with multiple interacting concepts, such as human subjects, as well as concepts that may be entangled in one, or across multiple, image illustrations remains illusive.
We propose a concept-driven TTI personalization framework that addresses these core challenges.
arXiv Detail & Related papers (2024-02-18T07:28:37Z) - Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing
Else [75.6806649860538]
We consider a more ambitious goal: natural multi-concept generation using a pre-trained diffusion model.
We observe concept dominance and non-localized contribution that severely degrade multi-concept generation performance.
We design a minimal low-cost solution that overcomes the above issues by tweaking the text embeddings for more realistic multi-concept text-to-image generation.
arXiv Detail & Related papers (2023-10-11T12:05:44Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
arXiv Detail & Related papers (2023-10-09T17:13:10Z) - Visual Concepts Tokenization [65.61987357146997]
We propose an unsupervised transformer-based Visual Concepts Tokenization framework, dubbed VCT, to perceive an image into a set of disentangled visual concept tokens.
To obtain these concept tokens, we only use cross-attention to extract visual information from the image tokens layer by layer without self-attention between concept tokens.
We further propose a Concept Disentangling Loss to facilitate that different concept tokens represent independent visual concepts.
arXiv Detail & Related papers (2022-05-20T11:25:31Z) - SegDiscover: Visual Concept Discovery via Unsupervised Semantic
Segmentation [29.809900593362844]
SegDiscover is a novel framework that discovers semantically meaningful visual concepts from imagery datasets with complex scenes without supervision.
Our method generates concept primitives from raw images, discovering concepts by clustering in the latent space of a self-supervised pretrained encoder, and concept refinement via neural network smoothing.
arXiv Detail & Related papers (2022-04-22T20:44:42Z) - Interactive Disentanglement: Learning Concepts by Interacting with their
Prototype Representations [15.284688801788912]
We show the advantages of prototype representations for understanding and revising the latent space of neural concept learners.
For this purpose, we introduce interactive Concept Swapping Networks (iCSNs)
iCSNs learn to bind conceptual information to specific prototype slots by swapping the latent representations of paired images.
arXiv Detail & Related papers (2021-12-04T09:25:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.