ConvNLP: Image-based AI Text Detection
- URL: http://arxiv.org/abs/2407.07225v1
- Date: Tue, 9 Jul 2024 20:44:40 GMT
- Title: ConvNLP: Image-based AI Text Detection
- Authors: Suriya Prakash Jambunathan, Ashwath Shankarnarayan, Parijat Dube,
- Abstract summary: This paper presents a novel approach for detecting AI-generated text using a visual representation of word embedding.
We have formulated a novel Convolutional Neural Network called ZigZag ResNet, as well as a scheduler for improving generalization, named ZigZag Scheduler.
Our best model detects AI-generated text with an impressive average detection rate (over inter- and intra-domain test data) of 88.35%.
- Score: 1.4419517737536705
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The potentials of Generative-AI technologies like Large Language models (LLMs) to revolutionize education are undermined by ethical considerations around their misuse which worsens the problem of academic dishonesty. LLMs like GPT-4 and Llama 2 are becoming increasingly powerful in generating sophisticated content and answering questions, from writing academic essays to solving complex math problems. Students are relying on these LLMs to complete their assignments and thus compromising academic integrity. Solutions to detect LLM-generated text are compute-intensive and often lack generalization. This paper presents a novel approach for detecting LLM-generated AI-text using a visual representation of word embedding. We have formulated a novel Convolutional Neural Network called ZigZag ResNet, as well as a scheduler for improving generalization, named ZigZag Scheduler. Through extensive evaluation using datasets of text generated by six different state-of-the-art LLMs, our model demonstrates strong intra-domain and inter-domain generalization capabilities. Our best model detects AI-generated text with an impressive average detection rate (over inter- and intra-domain test data) of 88.35%. Through an exhaustive ablation study, our ZigZag ResNet and ZigZag Scheduler provide a performance improvement of nearly 4% over the vanilla ResNet. The end-to-end inference latency of our model is below 2.5ms per sentence. Our solution offers a lightweight, computationally efficient, and faster alternative to existing tools for AI-generated text detection, with better generalization performance. It can help academic institutions in their fight against the misuse of LLMs in academic settings. Through this work, we aim to contribute to safeguarding the principles of academic integrity and ensuring the trustworthiness of student work in the era of advanced LLMs.
Related papers
- GigaCheck: Detecting LLM-generated Content [72.27323884094953]
In this work, we investigate the task of generated text detection by proposing the GigaCheck.
Our research explores two approaches: (i) distinguishing human-written texts from LLM-generated ones, and (ii) detecting LLM-generated intervals in Human-Machine collaborative texts.
Specifically, we use a fine-tuned general-purpose LLM in conjunction with a DETR-like detection model, adapted from computer vision, to localize artificially generated intervals within text.
arXiv Detail & Related papers (2024-10-31T08:30:55Z) - Thought of Search: Planning with Language Models Through The Lens of Efficiency [22.47015814897628]
We argue that recent trends abandon both soundness and completeness for the sake of inefficiency.
We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100% accuracy.
arXiv Detail & Related papers (2024-04-18T01:27:29Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Enhancing Textbook Question Answering Task with Large Language Models
and Retrieval Augmented Generation [3.948068081583197]
This paper proposes a methodology that handle the out-of-domain scenario in Textbook question answering (TQA)
Through supervised fine-tuning of the LLM model Llama-2 and the incorporation of RAG, our architecture outperforms the baseline, achieving a 4.12% accuracy improvement on validation set and 9.84% on test set for non-diagram multiple-choice questions.
arXiv Detail & Related papers (2024-02-05T11:58:56Z) - Enhancing Robustness of LLM-Synthetic Text Detectors for Academic
Writing: A Comprehensive Analysis [35.351782110161025]
Large language models (LLMs) offer numerous advantages in terms of revolutionizing work and study methods.
They have also garnered significant attention due to their potential negative consequences.
One example is generating academic reports or papers with little to no human contribution.
arXiv Detail & Related papers (2024-01-16T01:58:36Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions [39.36381851190369]
There is an imperative need to develop detectors that can detect LLM-generated text.
This is crucial to mitigate potential misuse of LLMs and safeguard realms like artistic expression and social networks from harmful influence of LLM-generated content.
The detector techniques have witnessed notable advancements recently, propelled by innovations in watermarking techniques, statistics-based detectors, neural-base detectors, and human-assisted methods.
arXiv Detail & Related papers (2023-10-23T09:01:13Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
We propose four characteristics of generally intelligent agents.
We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations.
We conclude by outlining promising future research directions in the field of artificial general intelligence.
arXiv Detail & Related papers (2023-07-07T13:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.