Lifestyle-Informed Personalized Blood Biomarker Prediction via Novel Representation Learning
- URL: http://arxiv.org/abs/2407.07277v1
- Date: Tue, 9 Jul 2024 23:52:53 GMT
- Title: Lifestyle-Informed Personalized Blood Biomarker Prediction via Novel Representation Learning
- Authors: A. Ali Heydari, Naghmeh Rezaei, Javier L. Prieto, Shwetak N. Patel, Ahmed A. Metwally,
- Abstract summary: We introduce a novel framework for predicting future blood biomarker values.
Our proposed method learns a similarity-based embedding space that captures the complex relationship between biomarkers and lifestyle factors.
- Score: 7.845988771273181
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Blood biomarkers are an essential tool for healthcare providers to diagnose, monitor, and treat a wide range of medical conditions. Current reference values and recommended ranges often rely on population-level statistics, which may not adequately account for the influence of inter-individual variability driven by factors such as lifestyle and genetics. In this work, we introduce a novel framework for predicting future blood biomarker values and define personalized references through learned representations from lifestyle data (physical activity and sleep) and blood biomarkers. Our proposed method learns a similarity-based embedding space that captures the complex relationship between biomarkers and lifestyle factors. Using the UK Biobank (257K participants), our results show that our deep-learned embeddings outperform traditional and current state-of-the-art representation learning techniques in predicting clinical diagnosis. Using a subset of UK Biobank of 6440 participants who have follow-up visits, we validate that the inclusion of these embeddings and lifestyle factors directly in blood biomarker models improves the prediction of future lab values from a single lab visit. This personalized modeling approach provides a foundation for developing more accurate risk stratification tools and tailoring preventative care strategies. In clinical settings, this translates to the potential for earlier disease detection, more timely interventions, and ultimately, a shift towards personalized healthcare.
Related papers
- Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Spatio-Temporal Similarity Measure based Multi-Task Learning for
Predicting Alzheimer's Disease Progression using MRI Data [18.669489433316127]
We propose a novel-temporal- similarity measure based multi-task learning approach for effectively predicting Alzheimer's disease progression.
Our method also enables performing longitudinal stability selection to identify the changing relationships between biomarkers.
We prove that the synergistic deteriorating biomarkers between cortical volumes or surface areas have a significant effect on the cognitive prediction.
arXiv Detail & Related papers (2023-11-06T21:59:19Z) - Hierarchical Pretraining for Biomedical Term Embeddings [4.69793648771741]
We propose HiPrBERT, a novel biomedical term representation model trained on hierarchical data.
We show that HiPrBERT effectively learns the pair-wise distance from hierarchical information, resulting in a substantially more informative embeddings for further biomedical applications.
arXiv Detail & Related papers (2023-07-01T08:16:00Z) - Clinically Labeled Contrastive Learning for OCT Biomarker Classification [12.633032175875865]
This paper presents a novel strategy for contrastive learning of medical images based on labels that can be extracted from clinical data.
We exploit this relationship by using the clinical data as pseudo-labels for our data without biomarker labels.
We show performance improvements by as much as 5% in total biomarker detection AUROC.
arXiv Detail & Related papers (2023-05-24T13:51:48Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
The NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients.
We propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression.
arXiv Detail & Related papers (2023-04-26T16:47:42Z) - Clinical Contrastive Learning for Biomarker Detection [15.510581400494207]
We exploit the relationship between clinical and biomarker data to improve performance for biomarker classification.
This is accomplished by leveraging the larger amount of clinical data as pseudo-labels for our data without biomarker labels.
Our method is shown to outperform state of the art self-supervised methods by as much as 5% in terms of accuracy on individual biomarker detection.
arXiv Detail & Related papers (2022-11-09T18:29:56Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
Low-dimensional embedding spaces can be derived from the UK Biobank population dataset to enhance data-scarce prediction of health indicators, lifestyle and demographic characteristics.
Performances gains from semisupervison approaches will probably become an important ingredient for various medical data science applications.
arXiv Detail & Related papers (2021-10-12T16:25:50Z) - The Future will be Different than Today: Model Evaluation Considerations
when Developing Translational Clinical Biomarker [4.549866091318765]
We present one evaluation strategy by using leave-one-study-out (LOSO) in place of conventional cross-validation (cv) methods.
To demonstrate the performance of K-fold vs LOSO cv in estimating the effect size of biomarkers, we leveraged data from clinical trials and simulation studies.
arXiv Detail & Related papers (2021-07-13T19:36:25Z) - Personalized pathology test for Cardio-vascular disease: Approximate
Bayesian computation with discriminative summary statistics learning [48.7576911714538]
We propose a platelet deposition model and an inferential scheme to estimate the biologically meaningful parameters using approximate computation.
This work opens up an unprecedented opportunity of personalized pathology test for CVD detection and medical treatment.
arXiv Detail & Related papers (2020-10-13T15:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.