Video In-context Learning
- URL: http://arxiv.org/abs/2407.07356v1
- Date: Wed, 10 Jul 2024 04:27:06 GMT
- Title: Video In-context Learning
- Authors: Wentao Zhang, Junliang Guo, Tianyu He, Li Zhao, Linli Xu, Jiang Bian,
- Abstract summary: In this paper, we study video in-context learning, where the model starts from an existing video clip and generates diverse potential future sequences.
To achieve this, we provide a clear definition of the task, and train an autoregressive Transformer on video datasets.
We design various evaluation metrics, including both objective and subjective measures, to demonstrate the visual quality and semantic accuracy of generation results.
- Score: 46.40277880351059
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In-context learning for vision data has been underexplored compared with that in natural language. Previous works studied image in-context learning, urging models to generate a single image guided by demonstrations. In this paper, we propose and study video in-context learning, where the model starts from an existing video clip and generates diverse potential future sequences, each semantically guided by the prompted video demonstrations. To achieve this, we provide a clear definition of the task, and train an autoregressive Transformer on video datasets. We thoroughly analyze the effect of different datasets and represent frames as discrete tokens, and then model them by next token predictions. We design various evaluation metrics, including both objective and subjective measures, to demonstrate the visual quality and semantic accuracy of generation results. Our model follows the scaling law and generates high-quality video clips that accurately align with the semantic guidance provided by in-context examples.
Related papers
- Towards Multi-Task Multi-Modal Models: A Video Generative Perspective [5.495245220300184]
This thesis chronicles our endeavor to build multi-task models for generating videos and other modalities under diverse conditions.
We unveil a novel approach to mapping bidirectionally between visual observation and interpretable lexical terms.
Our scalable visual token representation proves beneficial across generation, compression, and understanding tasks.
arXiv Detail & Related papers (2024-05-26T23:56:45Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data.
We define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources.
arXiv Detail & Related papers (2023-12-01T18:59:57Z) - Video Summarization Based on Video-text Modelling [0.0]
We propose a multimodal self-supervised learning framework to obtain semantic representations of videos.
We also introduce a progressive video summarization method, where the important content in a video is pinpointed progressively to generate better summaries.
An objective evaluation framework is proposed to measure the quality of video summaries based on video classification.
arXiv Detail & Related papers (2022-01-07T15:21:46Z) - MERLOT: Multimodal Neural Script Knowledge Models [74.05631672657452]
We introduce MERLOT, a model that learns multimodal script knowledge by watching millions of YouTube videos with transcribed speech.
MERLOT exhibits strong out-of-the-box representations of temporal commonsense, and achieves state-of-the-art performance on 12 different video QA datasets.
On Visual Commonsense Reasoning, MERLOT answers questions correctly with 80.6% accuracy, outperforming state-of-the-art models of similar size by over 3%.
arXiv Detail & Related papers (2021-06-04T17:57:39Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
Given a series of natural language captions, an agent must generate a sequence of images that correspond to the captions.
Prior work has introduced recurrent generative models which outperform synthesis text-to-image models on this task.
We present a number of improvements to prior modeling approaches, including the addition of a dual learning framework.
arXiv Detail & Related papers (2021-05-20T20:42:42Z) - Video SemNet: Memory-Augmented Video Semantic Network [14.64546899992196]
We propose a machine learning approach to capture the narrative elements in movies by bridging the gap between the low-level data representations and semantic aspects of the visual medium.
We present a Memory-Augmented Video Semantic Network, called Video SemNet, to encode the semantic descriptors and learn an embedding for the video.
We demonstrate that our model is able to predict genres and IMDB ratings with a weighted F-1 score of 0.72 and 0.63 respectively.
arXiv Detail & Related papers (2020-11-22T01:36:37Z) - Watch and Learn: Mapping Language and Noisy Real-world Videos with
Self-supervision [54.73758942064708]
We teach machines to understand visuals and natural language by learning the mapping between sentences and noisy video snippets without explicit annotations.
For training and evaluation, we contribute a new dataset ApartmenTour' that contains a large number of online videos and subtitles.
arXiv Detail & Related papers (2020-11-19T03:43:56Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
We propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning.
Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions.
arXiv Detail & Related papers (2020-11-18T20:21:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.