Multi-modal Crowd Counting via a Broker Modality
- URL: http://arxiv.org/abs/2407.07518v1
- Date: Wed, 10 Jul 2024 10:13:11 GMT
- Title: Multi-modal Crowd Counting via a Broker Modality
- Authors: Haoliang Meng, Xiaopeng Hong, Chenhao Wang, Miao Shang, Wangmeng Zuo,
- Abstract summary: Multi-modal crowd counting involves estimating crowd density from both visual and thermal/depth images.
We propose a novel approach by introducing an auxiliary broker modality and frame the task as a triple-modal learning problem.
We devise a fusion-based method to generate this broker modality, leveraging a non-diffusion, lightweight counterpart of modern denoising diffusion-based fusion models.
- Score: 64.5356816448361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal crowd counting involves estimating crowd density from both visual and thermal/depth images. This task is challenging due to the significant gap between these distinct modalities. In this paper, we propose a novel approach by introducing an auxiliary broker modality and on this basis frame the task as a triple-modal learning problem. We devise a fusion-based method to generate this broker modality, leveraging a non-diffusion, lightweight counterpart of modern denoising diffusion-based fusion models. Additionally, we identify and address the ghosting effect caused by direct cross-modal image fusion in multi-modal crowd counting. Through extensive experimental evaluations on popular multi-modal crowd-counting datasets, we demonstrate the effectiveness of our method, which introduces only 4 million additional parameters, yet achieves promising results. The code is available at https://github.com/HenryCilence/Broker-Modality-Crowd-Counting.
Related papers
- Turbo your multi-modal classification with contrastive learning [17.983460380784337]
In this paper, we propose a novel contrastive learning strategy, called $Turbo$, to promote multi-modal understanding.
Specifically, multi-modal data pairs are sent through the forward pass twice with different hidden dropout masks to get two different representations for each modality.
With these representations, we obtain multiple in-modal and cross-modal contrastive objectives for training.
arXiv Detail & Related papers (2024-09-14T03:15:34Z) - Multi-modal Crowd Counting via Modal Emulation [41.959740205234446]
We propose a modal emulation-based two-pass multi-modal crowd-counting framework.
Framework consists of two key components: a emphmulti-modal inference pass and a emphcross-modal emulation pass.
Experiments on both RGB-Thermal and RGB-Depth counting datasets demonstrate its superior performance compared to previous methods.
arXiv Detail & Related papers (2024-07-28T13:14:57Z) - DiffMM: Multi-Modal Diffusion Model for Recommendation [19.43775593283657]
We propose a novel multi-modal graph diffusion model for recommendation called DiffMM.
Our framework integrates a modality-aware graph diffusion model with a cross-modal contrastive learning paradigm to improve modality-aware user representation learning.
arXiv Detail & Related papers (2024-06-17T17:35:54Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Provable Dynamic Fusion for Low-Quality Multimodal Data [94.39538027450948]
Dynamic multimodal fusion emerges as a promising learning paradigm.
Despite its widespread use, theoretical justifications in this field are still notably lacking.
This paper provides theoretical understandings to answer this question under a most popular multimodal fusion framework from the generalization perspective.
A novel multimodal fusion framework termed Quality-aware Multimodal Fusion (QMF) is proposed, which can improve the performance in terms of classification accuracy and model robustness.
arXiv Detail & Related papers (2023-06-03T08:32:35Z) - Efficient Multimodal Fusion via Interactive Prompting [62.08292938484994]
Large-scale pre-training has brought unimodal fields such as computer vision and natural language processing to a new era.
We propose an efficient and flexible multimodal fusion method, namely PMF, tailored for fusing unimodally pre-trained transformers.
arXiv Detail & Related papers (2023-04-13T07:31:51Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
We present a Multi-grained Multi-modal Fusion Network (MMFN) for fake news detection.
Inspired by the multi-grained process of human assessment of news authenticity, we respectively employ two Transformer-based pre-trained models to encode token-level features from text and images.
The multi-modal module fuses fine-grained features, taking into account coarse-grained features encoded by the CLIP encoder.
arXiv Detail & Related papers (2023-04-03T09:13:59Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
We present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks.
Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix.
Our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
arXiv Detail & Related papers (2022-11-27T14:46:01Z) - Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content
Dilutions [27.983902791798965]
We develop a model that generates dilution text that maintains relevance and topical coherence with the image and existing text.
We find that the performance of task-specific fusion-based multimodal classifiers drops by 23.3% and 22.5%, respectively, in the presence of dilutions generated by our model.
Our work aims to highlight and encourage further research on the robustness of deep multimodal models to realistic variations.
arXiv Detail & Related papers (2022-11-04T17:58:02Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
We propose a novel method, dubbed Cross-Modal Info-Max Hashing (CMIMH)
We learn informative representations that can preserve both intra- and inter-modal similarities.
The proposed method consistently outperforms other state-of-the-art cross-modal retrieval methods.
arXiv Detail & Related papers (2021-12-13T08:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.