Quantum and classical algorithms for nonlinear unitary dynamics
- URL: http://arxiv.org/abs/2407.07685v1
- Date: Wed, 10 Jul 2024 14:08:58 GMT
- Title: Quantum and classical algorithms for nonlinear unitary dynamics
- Authors: Noah Brüstle, Nathan Wiebe,
- Abstract summary: We present a quantum algorithm for a non-linear differential equation of the form $fracd|urangledt.
We also introduce a classical algorithm based on the Euler method allowing comparably scaling to the quantum algorithm in a restricted case.
- Score: 0.5729426778193399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum algorithms for Hamiltonian simulation and linear differential equations more generally have provided promising exponential speed-ups over classical computers on a set of problems with high real-world interest. However, extending this to a nonlinear problem has proven challenging, with exponential lower bounds having been demonstrated for the time scaling. We provide a quantum algorithm matching these bounds. Specifically, we find that for a non-linear differential equation of the form $\frac{d|u\rangle}{dt} = A|u\rangle + B|u\rangle^{\otimes2}$ for evolution of time $T$, error tolerance $\epsilon$ and $c$ dependent on the strength of the nonlinearity, the number of queries to the differential operators that approaches the scaling of the quantum lower bound of $e^{o(T\|B\|)}$ queries in the limit of strong non-linearity. Finally, we introduce a classical algorithm based on the Euler method allowing comparably scaling to the quantum algorithm in a restricted case, as well as a randomized classical algorithm based on path integration that acts as a true analogue to the quantum algorithm in that it scales comparably to the quantum algorithm in cases where sign problems are absent.
Related papers
- Quantum multi-row iteration algorithm for linear systems with non-square coefficient matrices [7.174256268278207]
We propose a quantum algorithm inspired by the classical multi-row iteration method.
Our algorithm places less demand on the coefficient matrix, making it suitable for solving inconsistent systems.
arXiv Detail & Related papers (2024-09-06T03:32:02Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Limitations for Quantum Algorithms to Solve Turbulent and Chaotic Systems [0.2624902795082451]
We investigate the limitations of quantum computers for solving nonlinear dynamical systems.
We provide a significant limitation for any quantum algorithm that aims to output a quantum state that approximates the normalized solution vector.
arXiv Detail & Related papers (2023-07-13T11:06:02Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Efficient quantum algorithm for dissipative nonlinear differential
equations [1.1988695717766686]
We develop a quantum algorithm for dissipative quadratic $n$-dimensional ordinary differential equations.
Our algorithm has complexity $T2 qmathrmpoly(log T, log n, log 1/epsilon)/epsilon$, where $T$ is the evolution time, $epsilon$ is the allowed error, and $q$ measures decay of the solution.
arXiv Detail & Related papers (2020-11-06T04:27:00Z) - Towards quantum advantage via topological data analysis [0.0]
We study the quantum-algorithmic methods behind the algorithm for topological data analysis of Lloyd, Garnerone and Zanardi.
We provide a number of new quantum algorithms for problems such as rank estimation and complex network analysis.
arXiv Detail & Related papers (2020-05-06T06:31:24Z) - High-precision quantum algorithms for partial differential equations [1.4050836886292872]
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm.
We develop quantum algorithms based on adaptive-order finite difference methods and spectral methods.
Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound.
arXiv Detail & Related papers (2020-02-18T20:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.