SALSA: Swift Adaptive Lightweight Self-Attention for Enhanced LiDAR Place Recognition
- URL: http://arxiv.org/abs/2407.08260v2
- Date: Tue, 30 Jul 2024 12:54:59 GMT
- Title: SALSA: Swift Adaptive Lightweight Self-Attention for Enhanced LiDAR Place Recognition
- Authors: Raktim Gautam Goswami, Naman Patel, Prashanth Krishnamurthy, Farshad Khorrami,
- Abstract summary: We propose SALSA, a novel, lightweight, and efficient framework for LiDAR place recognition.
It consists of a Sphereformer backbone that uses radial window attention to enable information aggregation for sparse distant points.
It outperforms existing methods on various LiDAR place recognition datasets in terms of both retrieval and metric localization while operating in real-time.
- Score: 9.216146804584614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale LiDAR mappings and localization leverage place recognition techniques to mitigate odometry drifts, ensuring accurate mapping. These techniques utilize scene representations from LiDAR point clouds to identify previously visited sites within a database. Local descriptors, assigned to each point within a point cloud, are aggregated to form a scene representation for the point cloud. These descriptors are also used to re-rank the retrieved point clouds based on geometric fitness scores. We propose SALSA, a novel, lightweight, and efficient framework for LiDAR place recognition. It consists of a Sphereformer backbone that uses radial window attention to enable information aggregation for sparse distant points, an adaptive self-attention layer to pool local descriptors into tokens, and a multi-layer-perceptron Mixer layer for aggregating the tokens to generate a scene descriptor. The proposed framework outperforms existing methods on various LiDAR place recognition datasets in terms of both retrieval and metric localization while operating in real-time.
Related papers
- DSLO: Deep Sequence LiDAR Odometry Based on Inconsistent Spatio-temporal Propagation [66.8732965660931]
paper introduces a 3D point cloud sequence learning model based on inconsistent-temporal propagation for LiDAR odometry DSLO.
It consists of a pyramid structure with a sequential pose module, a hierarchical pose refinement module, and a temporal feature propagation module.
arXiv Detail & Related papers (2024-09-01T15:12:48Z) - Learning Continuous Implicit Field with Local Distance Indicator for
Arbitrary-Scale Point Cloud Upsampling [55.05706827963042]
Point cloud upsampling aims to generate dense and uniformly distributed point sets from a sparse point cloud.
Previous methods typically split a sparse point cloud into several local patches, upsample patch points, and merge all upsampled patches.
We propose a novel approach that learns an unsigned distance field guided by local priors for point cloud upsampling.
arXiv Detail & Related papers (2023-12-23T01:52:14Z) - Quadric Representations for LiDAR Odometry, Mapping and Localization [93.24140840537912]
Current LiDAR odometry, mapping and localization methods leverage point-wise representations of 3D scenes.
We propose a novel method of describing scenes using quadric surfaces, which are far more compact representations of 3D objects.
Our method maintains low latency and memory utility while achieving competitive, and even superior, accuracy.
arXiv Detail & Related papers (2023-04-27T13:52:01Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
We propose a dense neural simultaneous localization and mapping (SLAM) approach for monocular RGBD input.
We demonstrate that both tracking and mapping can be performed with the same point-based neural scene representation.
arXiv Detail & Related papers (2023-04-09T16:48:26Z) - CASSPR: Cross Attention Single Scan Place Recognition [43.68230981047338]
Place recognition based on point clouds (LiDAR) is an important component for autonomous robots or self-driving vehicles.
Current SOTA performance is achieved on accumulated LiDAR submaps using either point-based or voxel-based structures.
We propose CASSPR as a method to fuse point-based and voxel-based approaches using cross attention transformers.
arXiv Detail & Related papers (2022-11-22T19:18:30Z) - Descriptellation: Deep Learned Constellation Descriptors for SLAM [33.191251654815865]
We formulate a learning-based approach by constructing constellations from semantically meaningful objects.
We demonstrate the effectiveness of our Deep Learned Constellation Descriptor (Descriptellation) on the Paris-Rue-Lille and IQmulus datasets.
arXiv Detail & Related papers (2022-03-01T15:43:01Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - SSC: Semantic Scan Context for Large-Scale Place Recognition [13.228580954956342]
We explore the use of high-level features, namely semantics, to improve the representation ability of descriptors.
We propose a novel global descriptor, Semantic Scan Context, which explores semantic information to represent scenes more effectively.
Our approach outperforms the state-of-the-art methods with a large margin.
arXiv Detail & Related papers (2021-07-01T11:51:19Z) - Robust Place Recognition using an Imaging Lidar [45.37172889338924]
We propose a methodology for robust, real-time place recognition using an imaging lidar.
Our method is truly-invariant and can tackle reverse revisiting and upside-down revisiting.
arXiv Detail & Related papers (2021-03-03T01:08:31Z) - DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF
Relocalization [56.15308829924527]
We propose a Siamese network that jointly learns 3D local feature detection and description directly from raw 3D points.
For detecting 3D keypoints we predict the discriminativeness of the local descriptors in an unsupervised manner.
Experiments on various benchmarks demonstrate that our method achieves competitive results for both global point cloud retrieval and local point cloud registration.
arXiv Detail & Related papers (2020-07-17T20:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.