On the attribution of confidence to large language models
- URL: http://arxiv.org/abs/2407.08388v1
- Date: Thu, 11 Jul 2024 10:51:06 GMT
- Title: On the attribution of confidence to large language models
- Authors: Geoff Keeling, Winnie Street,
- Abstract summary: Credences are mental states corresponding to degrees of confidence in propositions.
The theoretical basis for credence attribution is unclear.
It is a distinct possibility that even if LLMs have credences, credence attributions are generally false.
- Score: 0.1478468781294373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Credences are mental states corresponding to degrees of confidence in propositions. Attribution of credences to Large Language Models (LLMs) is commonplace in the empirical literature on LLM evaluation. Yet the theoretical basis for LLM credence attribution is unclear. We defend three claims. First, our semantic claim is that LLM credence attributions are (at least in general) correctly interpreted literally, as expressing truth-apt beliefs on the part of scientists that purport to describe facts about LLM credences. Second, our metaphysical claim is that the existence of LLM credences is at least plausible, although current evidence is inconclusive. Third, our epistemic claim is that LLM credence attributions made in the empirical literature on LLM evaluation are subject to non-trivial sceptical concerns. It is a distinct possibility that even if LLMs have credences, LLM credence attributions are generally false because the experimental techniques used to assess LLM credences are not truth-tracking.
Related papers
- Scaling Laws for Fact Memorization of Large Language Models [67.94080978627363]
We analyze the scaling laws for Large Language Models' fact knowledge and their behaviors of memorizing different types of facts.
We find that LLMs' fact knowledge capacity has a linear and negative exponential law relationship with model size and training epochs.
Our findings reveal the capacity and characteristics of LLMs' fact knowledge learning, which provide directions for LLMs' fact knowledge augmentation.
arXiv Detail & Related papers (2024-06-22T03:32:09Z) - A Probabilistic Framework for LLM Hallucination Detection via Belief Tree Propagation [72.93327642336078]
We propose Belief Tree Propagation (BTProp), a probabilistic framework for hallucination detection.
BTProp introduces a belief tree of logically related statements by decomposing a parent statement into child statements.
Our method improves baselines by 3%-9% (evaluated by AUROC and AUC-PR) on multiple hallucination detection benchmarks.
arXiv Detail & Related papers (2024-06-11T05:21:37Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias.
We propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics.
We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential.
We are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
arXiv Detail & Related papers (2024-05-10T11:44:05Z) - TruthX: Alleviating Hallucinations by Editing Large Language Models in Truthful Space [31.769428095250912]
Large Language Models (LLMs) sometimes produce untruthful responses despite knowing the correct knowledge.
We propose TruthX, an inference-time intervention method to activate the truthfulness of LLM.
arXiv Detail & Related papers (2024-02-27T14:45:04Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text.
This position paper critically assesses three points recurring in critiques of LLM capacities.
We outline a pragmatic perspective on the issue of real' understanding and intentionality in LLMs.
arXiv Detail & Related papers (2023-10-30T15:51:04Z) - Why LLMs Hallucinate, and How to Get (Evidential) Closure: Perceptual,
Intensional, and Extensional Learning for Faithful Natural Language
Generation [0.0]
We show that LLMs hallucinate because their output is not constrained to be synonymous with claims for which they have evidence.
We then show how to constrain LLMs to produce output that does satisfy evidential closure.
arXiv Detail & Related papers (2023-10-23T20:35:52Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Position: Key Claims in LLM Research Have a Long Tail of Footnotes [81.14898541318198]
We argue that we do not have a working definition of Large Language Models (LLMs)
We critically examine five common claims regarding their properties.
We conclude with suggestions for future research directions and their framing.
arXiv Detail & Related papers (2023-08-14T13:00:53Z) - The Internal State of an LLM Knows When It's Lying [18.886091925252174]
Large Language Models (LLMs) have shown exceptional performance in various tasks.
One of their most prominent drawbacks is generating inaccurate or false information with a confident tone.
We provide evidence that the LLM's internal state can be used to reveal the truthfulness of statements.
arXiv Detail & Related papers (2023-04-26T02:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.