MeshAvatar: Learning High-quality Triangular Human Avatars from Multi-view Videos
- URL: http://arxiv.org/abs/2407.08414v1
- Date: Thu, 11 Jul 2024 11:37:51 GMT
- Title: MeshAvatar: Learning High-quality Triangular Human Avatars from Multi-view Videos
- Authors: Yushuo Chen, Zerong Zheng, Zhe Li, Chao Xu, Yebin Liu,
- Abstract summary: We present a novel pipeline for learning high-quality triangular human avatars from multi-view videos.
Our method represents the avatar with an explicit triangular mesh extracted from an implicit SDF field.
We incorporate physics-based rendering to accurately decompose geometry and texture.
- Score: 41.45299653187577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel pipeline for learning high-quality triangular human avatars from multi-view videos. Recent methods for avatar learning are typically based on neural radiance fields (NeRF), which is not compatible with traditional graphics pipeline and poses great challenges for operations like editing or synthesizing under different environments. To overcome these limitations, our method represents the avatar with an explicit triangular mesh extracted from an implicit SDF field, complemented by an implicit material field conditioned on given poses. Leveraging this triangular avatar representation, we incorporate physics-based rendering to accurately decompose geometry and texture. To enhance both the geometric and appearance details, we further employ a 2D UNet as the network backbone and introduce pseudo normal ground-truth as additional supervision. Experiments show that our method can learn triangular avatars with high-quality geometry reconstruction and plausible material decomposition, inherently supporting editing, manipulation or relighting operations.
Related papers
- HR Human: Modeling Human Avatars with Triangular Mesh and High-Resolution Textures from Videos [52.23323966700072]
We present a framework for acquiring human avatars that are attached with high-resolution physically-based material textures and mesh from monocular video.
Our method introduces a novel information fusion strategy to combine the information from the monocular video and synthesize virtual multi-view images.
Experiments show that our approach outperforms previous representations in terms of high fidelity, and this explicit result supports deployment on common triangulars.
arXiv Detail & Related papers (2024-05-18T11:49:09Z) - Relightable and Animatable Neural Avatars from Videos [14.091229306680697]
We propose a method to create relightable and animatable neural avatars.
The key challenge is to disentangle the geometry, material of the clothed body, and lighting.
Experiments on synthetic and real datasets show that our approach reconstructs high-quality geometry.
arXiv Detail & Related papers (2023-12-20T09:39:55Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - PointAvatar: Deformable Point-based Head Avatars from Videos [103.43941945044294]
PointAvatar is a deformable point-based representation that disentangles the source color into intrinsic albedo and normal-dependent shading.
We show that our method is able to generate animatable 3D avatars using monocular videos from multiple sources.
arXiv Detail & Related papers (2022-12-16T10:05:31Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
We propose IMavatar, a novel method for learning implicit head avatars from monocular videos.
Inspired by the fine-grained control mechanisms afforded by conventional 3DMMs, we represent the expression- and pose-related deformations via learned blendshapes and skinning fields.
We show quantitatively and qualitatively that our method improves geometry and covers a more complete expression space compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-14T15:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.