RTMW: Real-Time Multi-Person 2D and 3D Whole-body Pose Estimation
- URL: http://arxiv.org/abs/2407.08634v1
- Date: Thu, 11 Jul 2024 16:15:47 GMT
- Title: RTMW: Real-Time Multi-Person 2D and 3D Whole-body Pose Estimation
- Authors: Tao Jiang, Xinchen Xie, Yining Li,
- Abstract summary: Whole-body pose estimation aims to predict fine-grained pose information for the human body.
We present RTMW (Real-Time Multi-person Whole-body pose estimation models), a series of high-performance models for 2D/3D whole-body pose estimation.
- Score: 9.121372333621538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Whole-body pose estimation is a challenging task that requires simultaneous prediction of keypoints for the body, hands, face, and feet. Whole-body pose estimation aims to predict fine-grained pose information for the human body, including the face, torso, hands, and feet, which plays an important role in the study of human-centric perception and generation and in various applications. In this work, we present RTMW (Real-Time Multi-person Whole-body pose estimation models), a series of high-performance models for 2D/3D whole-body pose estimation. We incorporate RTMPose model architecture with FPN and HEM (Hierarchical Encoding Module) to better capture pose information from different body parts with various scales. The model is trained with a rich collection of open-source human keypoint datasets with manually aligned annotations and further enhanced via a two-stage distillation strategy. RTMW demonstrates strong performance on multiple whole-body pose estimation benchmarks while maintaining high inference efficiency and deployment friendliness. We release three sizes: m/l/x, with RTMW-l achieving a 70.2 mAP on the COCO-Wholebody benchmark, making it the first open-source model to exceed 70 mAP on this benchmark. Meanwhile, we explored the performance of RTMW in the task of 3D whole-body pose estimation, conducting image-based monocular 3D whole-body pose estimation in a coordinate classification manner. We hope this work can benefit both academic research and industrial applications. The code and models have been made publicly available at: https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose
Related papers
- Neural Localizer Fields for Continuous 3D Human Pose and Shape Estimation [32.30055363306321]
We propose a paradigm for seamlessly unifying different human pose and shape-related tasks and datasets.
Our formulation is centered on the ability - both at training and test time - to query any arbitrary point of the human volume.
We can naturally exploit differently annotated data sources including mesh, 2D/3D skeleton and dense pose, without having to convert between them.
arXiv Detail & Related papers (2024-07-10T10:44:18Z) - Multi-HMR: Multi-Person Whole-Body Human Mesh Recovery in a Single Shot [22.848563931757962]
We present Multi-HMR, a strong sigle-shot model for multi-person 3D human mesh recovery from a single RGB image.
Predictions encompass the whole body, including hands and facial expressions, using the SMPL-X parametric model.
We show that incorporating it into the training data further enhances predictions, particularly for hands.
arXiv Detail & Related papers (2024-02-22T16:05:13Z) - ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation [54.86887812687023]
Most 3D-HPE methods rely on regression models, which assume a one-to-one mapping between inputs and outputs.
We propose ManiPose, a novel manifold-constrained multi-hypothesis model capable of proposing multiple candidate 3D poses for each 2D input.
Unlike previous multi-hypothesis approaches, our solution is completely supervised and does not rely on complex generative models.
arXiv Detail & Related papers (2023-12-11T13:50:10Z) - PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape
Prediction [77.89935657608926]
We propose a Pose-Free Large Reconstruction Model (PF-LRM) for reconstructing a 3D object from a few unposed images.
PF-LRM simultaneously estimates the relative camera poses in 1.3 seconds on a single A100 GPU.
arXiv Detail & Related papers (2023-11-20T18:57:55Z) - Direct Multi-view Multi-person 3D Pose Estimation [138.48139701871213]
We present Multi-view Pose transformer (MvP) for estimating multi-person 3D poses from multi-view images.
MvP directly regresses the multi-person 3D poses in a clean and efficient way, without relying on intermediate tasks.
We show experimentally that our MvP model outperforms the state-of-the-art methods on several benchmarks while being much more efficient.
arXiv Detail & Related papers (2021-11-07T13:09:20Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
We present a simple, yet effective, approach for self-supervised 3D human pose estimation.
We rely on triangulating 2D body pose estimates of a multiple-view camera system.
Our method achieves state-of-the-art performance in the Human3.6M and MPI-INF-3DHP benchmarks.
arXiv Detail & Related papers (2021-10-14T17:40:45Z) - Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose
Estimation [61.98690211671168]
We propose a Multi-level Attention-Decoder Network (MAED) to model multi-level attentions in a unified framework.
With the training set of 3DPW, MAED outperforms previous state-of-the-art methods by 6.2, 7.2, and 2.4 mm of PA-MPJPE.
arXiv Detail & Related papers (2021-09-06T09:06:17Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.