Latent Spaces Enable Transformer-Based Dose Prediction in Complex Radiotherapy Plans
- URL: http://arxiv.org/abs/2407.08650v1
- Date: Thu, 11 Jul 2024 16:28:44 GMT
- Title: Latent Spaces Enable Transformer-Based Dose Prediction in Complex Radiotherapy Plans
- Authors: Edward Wang, Ryan Au, Pencilla Lang, Sarah A. Mattonen,
- Abstract summary: Multi-lesion lung SABR plans are complex and require significant resources to create.
We propose a novel two-stage latent transformer framework (LDFormer) for dose prediction of lung SABR plans with varying numbers of lesions.
- Score: 0.11249583407496219
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Evidence is accumulating in favour of using stereotactic ablative body radiotherapy (SABR) to treat multiple cancer lesions in the lung. Multi-lesion lung SABR plans are complex and require significant resources to create. In this work, we propose a novel two-stage latent transformer framework (LDFormer) for dose prediction of lung SABR plans with varying numbers of lesions. In the first stage, patient anatomical information and the dose distribution are encoded into a latent space. In the second stage, a transformer learns to predict the dose latent from the anatomical latents. Causal attention is modified to adapt to different numbers of lesions. LDFormer outperforms a state-of-the-art generative adversarial network on dose conformality in and around lesions, and the performance gap widens when considering overlapping lesions. LDFormer generates predictions of 3-D dose distributions in under 30s on consumer hardware, and has the potential to assist physicians with clinical decision making, reduce resource costs, and accelerate treatment planning.
Related papers
- MD-Dose: A Diffusion Model based on the Mamba for Radiotherapy Dose
Prediction [14.18016609082685]
We introduce a novel diffusion model, MD-Dose, for predicting radiation therapy dose distribution in thoracic cancer patients.
In the forward process, MD-Dose adds Gaussian noise to dose distribution maps to obtain pure noise images.
In the backward process, MD-Dose utilizes a noise predictor based on the Mamba to predict the noise, ultimately outputting the dose distribution maps.
arXiv Detail & Related papers (2024-03-13T12:46:36Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Triplet-constraint Transformer with Multi-scale Refinement for Dose
Prediction in Radiotherapy [10.232397630125886]
CNNs have automated the radiotherapy plan-making by predicting the dose maps.
Current CNN-based methods ignore the remarkable dose difference in the dose map.
We propose a triplet-constraint transformer (TCtrans) with multi-scale refinement to predict the high-quality dose distribution.
arXiv Detail & Related papers (2024-02-07T04:05:29Z) - SP-DiffDose: A Conditional Diffusion Model for Radiation Dose Prediction
Based on Multi-Scale Fusion of Anatomical Structures, Guided by
SwinTransformer and Projector [14.18016609082685]
We propose a dose prediction diffusion model based on SwinTransformer and a projector, SP-DiffDose.
To capture the direct correlation between anatomical structure and dose distribution maps, SP-DiffDose uses a structural encoder to extract features from anatomical images.
To enhance the dose prediction distribution for organs at risk, SP-DiffDose utilizes SwinTransformer in the deeper layers of the network to capture features at different scales in the image.
arXiv Detail & Related papers (2023-12-11T08:07:41Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Variational Autoencoders for Feature Exploration and Malignancy
Prediction of Lung Lesions [0.0]
Lung cancer is responsible for 21% of cancer deaths in the UK.
Recent studies have demonstrated the capability of AI methods for accurate and early diagnosis of lung cancer from routine scans.
This study investigates the application Variational Autoencoders (VAEs), a type of generative AI model, to lung cancer lesions.
arXiv Detail & Related papers (2023-11-27T11:12:33Z) - DiffDP: Radiotherapy Dose Prediction via a Diffusion Model [13.44191425264393]
We introduce a diffusion-based dose prediction (DiffDP) model for predicting the radiotherapy dose distribution of cancer patients.
In the forward process, DiffDP gradually transforms dose maps into Gaussian noise by adding small noise and trains a noise predictor to predict the noise added in each timestep.
In the reverse process, it removes the noise from the original Gaussian noise in multiple steps with the well-trained noise predictor and finally outputs the predicted dose distribution map.
arXiv Detail & Related papers (2023-07-19T07:25:33Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Simultaneous Estimation of X-ray Back-Scatter and Forward-Scatter using
Multi-Task Learning [59.17383024536595]
Back-scatter significantly contributes to patient (skin) dose during complicated interventions.
Forward-scattered radiation reduces contrast in projection images and introduces artifacts in 3-D reconstructions.
We propose a novel approach combining conventional techniques with learning-based methods to simultaneously estimate the forward-scatter reaching the detector.
arXiv Detail & Related papers (2020-07-08T10:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.