Generalizable Implicit Motion Modeling for Video Frame Interpolation
- URL: http://arxiv.org/abs/2407.08680v4
- Date: Mon, 11 Nov 2024 12:59:13 GMT
- Title: Generalizable Implicit Motion Modeling for Video Frame Interpolation
- Authors: Zujin Guo, Wei Li, Chen Change Loy,
- Abstract summary: Motion is critical in flow-based Video Frame Interpolation (VFI)
We introduce General Implicit Motion Modeling (IMM), a novel and effective approach to motion modeling VFI.
Our GIMM can be easily integrated with existing flow-based VFI works by supplying accurately modeled motion.
- Score: 51.966062283735596
- License:
- Abstract: Motion modeling is critical in flow-based Video Frame Interpolation (VFI). Existing paradigms either consider linear combinations of bidirectional flows or directly predict bilateral flows for given timestamps without exploring favorable motion priors, thus lacking the capability of effectively modeling spatiotemporal dynamics in real-world videos. To address this limitation, in this study, we introduce Generalizable Implicit Motion Modeling (GIMM), a novel and effective approach to motion modeling for VFI. Specifically, to enable GIMM as an effective motion modeling paradigm, we design a motion encoding pipeline to model spatiotemporal motion latent from bidirectional flows extracted from pre-trained flow estimators, effectively representing input-specific motion priors. Then, we implicitly predict arbitrary-timestep optical flows within two adjacent input frames via an adaptive coordinate-based neural network, with spatiotemporal coordinates and motion latent as inputs. Our GIMM can be easily integrated with existing flow-based VFI works by supplying accurately modeled motion. We show that GIMM performs better than the current state of the art on standard VFI benchmarks.
Related papers
- Motion-aware Latent Diffusion Models for Video Frame Interpolation [51.78737270917301]
Motion estimation between neighboring frames plays a crucial role in avoiding motion ambiguity.
We propose a novel diffusion framework, motion-aware latent diffusion models (MADiff)
Our method achieves state-of-the-art performance significantly outperforming existing approaches.
arXiv Detail & Related papers (2024-04-21T05:09:56Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
We introduce a Motion-Aware Video Frame Interpolation (MA-VFI) network, which directly estimates intermediate optical flow from consecutive frames.
It not only extracts global semantic relationships and spatial details from input frames with different receptive fields, but also effectively reduces the required computational cost and complexity.
arXiv Detail & Related papers (2024-02-05T11:00:14Z) - A Multi-In-Single-Out Network for Video Frame Interpolation without
Optical Flow [14.877766449009119]
deep learning-based video frame (VFI) methods have predominantly focused on estimating motion between two input frames.
We propose a multi-in-single-out (MISO) based VFI method that does not rely on motion vector estimation.
We introduce a novel motion perceptual loss that enables MISO-VFI to better capture the vectors-temporal within the video frames.
arXiv Detail & Related papers (2023-11-20T08:29:55Z) - Boost Video Frame Interpolation via Motion Adaptation [73.42573856943923]
Video frame (VFI) is a challenging task that aims to generate intermediate frames between two consecutive frames in a video.
Existing learning-based VFI methods have achieved great success, but they still suffer from limited generalization ability.
We propose a novel optimization-based VFI method that can adapt to unseen motions at test time.
arXiv Detail & Related papers (2023-06-24T10:44:02Z) - Learning Variational Motion Prior for Video-based Motion Capture [31.79649766268877]
We present a novel variational motion prior (VMP) learning approach for video-based motion capture.
Our framework can effectively reduce temporal jittering and failure modes in frame-wise pose estimation.
Experiments over both public datasets and in-the-wild videos have demonstrated the efficacy and generalization capability of our framework.
arXiv Detail & Related papers (2022-10-27T02:45:48Z) - Enhanced Bi-directional Motion Estimation for Video Frame Interpolation [0.05541644538483946]
We present a novel yet effective algorithm for motion-based video frame estimation.
Our method achieves excellent performance on a broad range of video frame benchmarks.
arXiv Detail & Related papers (2022-06-17T06:08:43Z) - JNMR: Joint Non-linear Motion Regression for Video Frame Interpolation [47.123769305867775]
Video frame (VFI) aims to generate frames by warping learnable motions from the bidirectional historical references.
We reformulate VFI as a Joint Non-linear Motion Regression (JNMR) strategy to model the complicated motions of inter-frame.
We show that the effectiveness and significant improvement of joint motion regression compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T02:47:29Z) - Long-term Video Frame Interpolation via Feature Propagation [95.18170372022703]
Video frame (VFI) works generally predict intermediate frame(s) by first estimating the motion between inputs and then warping the inputs to the target time with the estimated motion.
This approach is not optimal when the temporal distance between the input sequence increases.
We propose a propagation network (PNet) by extending the classic feature-level forecasting with a novel motion-to-feature approach.
arXiv Detail & Related papers (2022-03-29T10:47:06Z) - MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying
Motions [70.30211294212603]
This paper tackles video prediction from a new dimension of predicting spacetime-varying motions that are incessantly across both space and time.
We propose the MotionRNN framework, which can capture the complex variations within motions and adapt to spacetime-varying scenarios.
arXiv Detail & Related papers (2021-03-03T08:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.