Approximating G(t)/GI/1 queues with deep learning
- URL: http://arxiv.org/abs/2407.08765v1
- Date: Thu, 11 Jul 2024 05:25:45 GMT
- Title: Approximating G(t)/GI/1 queues with deep learning
- Authors: Eliran Sherzer, Opher Baron, Dmitry Krass, Yehezkel Resheff,
- Abstract summary: We apply a supervised machine-learning approach to solve a problem in queueing theory.
It estimates the transient distribution of the number in the system for a G(t)/GI/1.
We develop a neural network mechanism that provides a fast and accurate predictor of these distributions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we apply a supervised machine-learning approach to solve a fundamental problem in queueing theory: estimating the transient distribution of the number in the system for a G(t)/GI/1. We develop a neural network mechanism that provides a fast and accurate predictor of these distributions for moderate horizon lengths and practical settings. It is based on using a Recurrent Neural Network (RNN) architecture based on the first several moments of the time-dependant inter-arrival and the stationary service time distributions; we call it the Moment-Based Recurrent Neural Network (RNN) method (MBRNN ). Our empirical study suggests MBRNN requires only the first four inter-arrival and service time moments. We use simulation to generate a substantial training dataset and present a thorough performance evaluation to examine the accuracy of our method using two different test sets. We show that even under the configuration with the worst performance errors, the mean number of customers over the entire timeline has an error of less than 3%. While simulation modeling can achieve high accuracy, the advantage of the MBRNN over simulation is runtime, while the MBRNN analyzes hundreds of systems within a fraction of a second. This paper focuses on a G(t)/GI/1; however, the MBRNN approach demonstrated here can be extended to other queueing systems, as the training data labeling is based on simulations (which can be applied to more complex systems) and the training is based on deep learning, which can capture very complex time sequence tasks. In summary, the MBRNN can potentially revolutionize our ability to perform transient analyses of queueing systems.
Related papers
- Time Elastic Neural Networks [2.1756081703276]
We introduce and detail an atypical neural network architecture, called time elastic neural network (teNN)
The novelty compared to classical neural network architecture is that it explicitly incorporates time warping ability.
We demonstrate that, during the training process, the teNN succeeds in reducing the number of neurons required within each cell.
arXiv Detail & Related papers (2024-05-27T09:01:30Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Effect of Architectures and Training Methods on the Performance of
Learned Video Frame Prediction [10.404162481860634]
Experimental results show that the residual FCNN architecture performs the best in terms of peak signal to noise ratio (PSNR) at the expense of higher training and test (inference) computational complexity.
The CRNN can be trained stably and very efficiently using the stateful truncated backpropagation through time procedure.
arXiv Detail & Related papers (2020-08-13T20:45:28Z) - Graph Neural Networks for Leveraging Industrial Equipment Structure: An
application to Remaining Useful Life Estimation [21.297461316329453]
We propose to capture the structure of a complex equipment in the form of a graph, and use graph neural networks (GNNs) to model multi-sensor time-series data.
We observe that the proposed GNN-based RUL estimation model compares favorably to several strong baselines from literature such as those based on RNNs and CNNs.
arXiv Detail & Related papers (2020-06-30T06:38:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.