DG-PIC: Domain Generalized Point-In-Context Learning for Point Cloud Understanding
- URL: http://arxiv.org/abs/2407.08801v1
- Date: Thu, 11 Jul 2024 18:21:40 GMT
- Title: DG-PIC: Domain Generalized Point-In-Context Learning for Point Cloud Understanding
- Authors: Jincen Jiang, Qianyu Zhou, Yuhang Li, Xuequan Lu, Meili Wang, Lizhuang Ma, Jian Chang, Jian Jun Zhang,
- Abstract summary: We introduce a novel, practical, multi-domain multi-task setting, handling multiple domains and multiple tasks within one unified model for domain generalized point cloud understanding.
Our DG-PIC does not require any model updates during the testing and can handle unseen domains and multiple tasks, textiti.e., point cloud reconstruction, denoising, and registration, within one unified model.
- Score: 41.49771026674969
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent point cloud understanding research suffers from performance drops on unseen data, due to the distribution shifts across different domains. While recent studies use Domain Generalization (DG) techniques to mitigate this by learning domain-invariant features, most are designed for a single task and neglect the potential of testing data. Despite In-Context Learning (ICL) showcasing multi-task learning capability, it usually relies on high-quality context-rich data and considers a single dataset, and has rarely been studied in point cloud understanding. In this paper, we introduce a novel, practical, multi-domain multi-task setting, handling multiple domains and multiple tasks within one unified model for domain generalized point cloud understanding. To this end, we propose Domain Generalized Point-In-Context Learning (DG-PIC) that boosts the generalizability across various tasks and domains at testing time. In particular, we develop dual-level source prototype estimation that considers both global-level shape contextual and local-level geometrical structures for representing source domains and a dual-level test-time feature shifting mechanism that leverages both macro-level domain semantic information and micro-level patch positional relationships to pull the target data closer to the source ones during the testing. Our DG-PIC does not require any model updates during the testing and can handle unseen domains and multiple tasks, \textit{i.e.,} point cloud reconstruction, denoising, and registration, within one unified model. We also introduce a benchmark for this new setting. Comprehensive experiments demonstrate that DG-PIC outperforms state-of-the-art techniques significantly.
Related papers
- MultiMatch: Multi-task Learning for Semi-supervised Domain Generalization [55.06956781674986]
We resort to solving the semi-supervised domain generalization task, where there are a few label information in each source domain.
We propose MultiMatch, extending FixMatch to the multi-task learning framework, producing the high-quality pseudo-label for SSDG.
A series of experiments validate the effectiveness of the proposed method, and it outperforms the existing semi-supervised methods and the SSDG method on several benchmark DG datasets.
arXiv Detail & Related papers (2022-08-11T14:44:33Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
We argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models.
We name two-stream adaptive learning (TAL) to simultaneously model these two kinds of information.
Our framework can be applied to both single-source and multi-source domain generalization tasks.
arXiv Detail & Related papers (2021-11-29T01:27:42Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z) - Learning causal representations for robust domain adaptation [31.261956776418618]
In many real-world applications, target domain data may not always be available.
In this paper, we study the cases where at the training phase the target domain data is unavailable.
We propose a novel Causal AutoEncoder (CAE), which integrates deep autoencoder and causal structure learning into a unified model.
arXiv Detail & Related papers (2020-11-12T11:24:03Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.