A Hybrid Spiking-Convolutional Neural Network Approach for Advancing Machine Learning Models
- URL: http://arxiv.org/abs/2407.08861v1
- Date: Thu, 11 Jul 2024 20:50:33 GMT
- Title: A Hybrid Spiking-Convolutional Neural Network Approach for Advancing Machine Learning Models
- Authors: Sanaullah, Kaushik Roy, Ulrich Rückert, Thorsten Jungeblut,
- Abstract summary: We propose a novel hybrid Spiking-Convolutional Neural Network (SC-NN) model and test on using image inpainting tasks.
Our approach uses the unique capabilities of SNNs, such as event-based computation and temporal processing, along with the strong representation learning abilities of CNNs.
The model is trained on a custom dataset specifically designed for image inpainting, where missing regions are created using masks.
- Score: 6.528272856589831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we propose a novel standalone hybrid Spiking-Convolutional Neural Network (SC-NN) model and test on using image inpainting tasks. Our approach uses the unique capabilities of SNNs, such as event-based computation and temporal processing, along with the strong representation learning abilities of CNNs, to generate high-quality inpainted images. The model is trained on a custom dataset specifically designed for image inpainting, where missing regions are created using masks. The hybrid model consists of SNNConv2d layers and traditional CNN layers. The SNNConv2d layers implement the leaky integrate-and-fire (LIF) neuron model, capturing spiking behavior, while the CNN layers capture spatial features. In this study, a mean squared error (MSE) loss function demonstrates the training process, where a training loss value of 0.015, indicates accurate performance on the training set and the model achieved a validation loss value as low as 0.0017 on the testing set. Furthermore, extensive experimental results demonstrate state-of-the-art performance, showcasing the potential of integrating temporal dynamics and feature extraction in a single network for image inpainting.
Related papers
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - A Gradient Boosting Approach for Training Convolutional and Deep Neural
Networks [0.0]
We introduce two procedures for training Convolutional Neural Networks (CNNs) and Deep Neural Network based on Gradient Boosting (GB)
The presented models show superior performance in terms of classification accuracy with respect to standard CNN and Deep-NN with the same architectures.
arXiv Detail & Related papers (2023-02-22T12:17:32Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
We develop convolutional neural generative coding (Conv-NGC)
We implement a flexible neurobiologically-motivated algorithm that progressively refines latent state maps.
We study the effectiveness of our brain-inspired neural system on the tasks of reconstruction and image denoising.
arXiv Detail & Related papers (2022-11-22T06:42:41Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
We propose a novel "Decoupled-Mixup" method to train CNN models for visual recognition.
Our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combines these regions to train CNN models.
Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts.
arXiv Detail & Related papers (2022-10-26T15:21:39Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Supervised Training of Siamese Spiking Neural Networks with Earth's
Mover Distance [4.047840018793636]
This study adapts the highly-versatile siamese neural network model to the event data domain.
We introduce a supervised training framework for optimizing Earth's Mover Distance between spike trains with spiking neural networks (SNN)
arXiv Detail & Related papers (2022-02-20T00:27:57Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Neural Knitworks: Patched Neural Implicit Representation Networks [1.0470286407954037]
We propose Knitwork, an architecture for neural implicit representation learning of natural images that achieves image synthesis.
To the best of our knowledge, this is the first implementation of a coordinate-based patch tailored for synthesis tasks such as image inpainting, super-resolution, and denoising.
The results show that modeling natural images using patches, rather than pixels, produces results of higher fidelity.
arXiv Detail & Related papers (2021-09-29T13:10:46Z) - SAR Image Classification Based on Spiking Neural Network through
Spike-Time Dependent Plasticity and Gradient Descent [7.106664778883502]
Spiking neural network (SNN) is one of the core components of brain-like intelligence.
This article constructs a complete SAR image based on unsupervised and supervised learning SNN.
arXiv Detail & Related papers (2021-06-15T09:36:04Z) - Single Image Dehazing Using Ranking Convolutional Neural Network [43.9523642309301]
This paper presents a novel Ranking Convolutional Neural Network (Ranking-CNN) for single image dehazing.
By training Ranking-CNN in a well-designed manner, powerful haze-relevant features can be automatically learned from massive hazy image patches.
Our approach outperforms several previous dehazing approaches on synthetic and real-world benchmark images.
arXiv Detail & Related papers (2020-01-15T11:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.