DeepCodeProbe: Towards Understanding What Models Trained on Code Learn
- URL: http://arxiv.org/abs/2407.08890v1
- Date: Thu, 11 Jul 2024 23:16:44 GMT
- Title: DeepCodeProbe: Towards Understanding What Models Trained on Code Learn
- Authors: Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
- Abstract summary: We introduce DeepCodeProbe, a probing approach that examines the syntax and representation learning abilities of ML models.
Our study applies DeepCodeProbe to state-of-the-art models for code clone detection, code summarization, and comment generation.
Findings reveal that while small models capture abstract syntactic representations, their ability to fully grasp programming language syntax is limited.
- Score: 13.135962181354465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models trained on code and related artifacts offer valuable support for software maintenance but suffer from interpretability issues due to their complex internal variables. These concerns are particularly significant in safety-critical applications where the models' decision-making processes must be reliable. The specific features and representations learned by these models remain unclear, adding to the hesitancy in adopting them widely. To address these challenges, we introduce DeepCodeProbe, a probing approach that examines the syntax and representation learning abilities of ML models designed for software maintenance tasks. Our study applies DeepCodeProbe to state-of-the-art models for code clone detection, code summarization, and comment generation. Findings reveal that while small models capture abstract syntactic representations, their ability to fully grasp programming language syntax is limited. Increasing model capacity improves syntax learning but introduces trade-offs such as increased training time and overfitting. DeepCodeProbe also identifies specific code patterns the models learn from their training data. Additionally, we provide best practices for training models on code to enhance performance and interpretability, supported by an open-source replication package for broader application of DeepCodeProbe in interpreting other code-related models.
Related papers
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - Toward Exploring the Code Understanding Capabilities of Pre-trained Code Generation Models [12.959392500354223]
We pioneer the transfer of knowledge from pre-trained code generation models to code understanding tasks.
We introduce CL4D, a contrastive learning method designed to enhance the representation capabilities of decoder-only models.
arXiv Detail & Related papers (2024-06-18T06:52:14Z) - Collaborative decoding of critical tokens for boosting factuality of
large language models [57.504894664689]
Finetuned and aligned models show improved abilities of instruction following and safe generation.
The common practice of using sampling during generation also increases chances of hallucination.
We introduce a collaborative decoding framework to harness the high factuality within pretrained models through the concept of critical tokens.
arXiv Detail & Related papers (2024-02-28T01:53:37Z) - Code Representation Learning At Scale [75.04686476303436]
We fuel code representation learning with a vast amount of code data via a two-stage pretraining scheme.
We first train the encoders via a mix that leverages both randomness in masking language modeling and the structure aspect of programming language.
We then enhance the representations via contrastive learning with hard negative and hard positive constructed in an unsupervised manner.
arXiv Detail & Related papers (2024-02-02T22:19:15Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Enriching Source Code with Contextual Data for Code Completion Models:
An Empirical Study [4.438873396405334]
We aim to answer whether making code easier to understand through using contextual data improves the performance of pre-trained code language models for the task of code completion.
For comments, we find that the models perform better in the presence of multi-line comments.
arXiv Detail & Related papers (2023-04-24T17:09:14Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - Adding Context to Source Code Representations for Deep Learning [13.676416860721877]
We argue that it is beneficial for deep learning models to have access to additional contextual information about the code being analysed.
We present preliminary evidence that encoding context from the call hierarchy along with information from the code itself can improve the performance of a state-of-the-art deep learning model.
arXiv Detail & Related papers (2022-07-30T12:47:32Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - Probing Pretrained Models of Source Code [14.904366372190943]
General pretrained models have been shown to outperform task-specific models in many applications.
We show that pretrained models of code indeed contain information about code syntactic structure and correctness, the notions of identifiers, data flow and correctnesss, and natural language naming.
arXiv Detail & Related papers (2022-02-16T10:26:14Z) - A Transformer-based Approach for Source Code Summarization [86.08359401867577]
We learn code representation for summarization by modeling the pairwise relationship between code tokens.
We show that despite the approach is simple, it outperforms the state-of-the-art techniques by a significant margin.
arXiv Detail & Related papers (2020-05-01T23:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.