Empowering Few-Shot Relation Extraction with The Integration of Traditional RE Methods and Large Language Models
- URL: http://arxiv.org/abs/2407.08967v1
- Date: Fri, 12 Jul 2024 03:31:11 GMT
- Title: Empowering Few-Shot Relation Extraction with The Integration of Traditional RE Methods and Large Language Models
- Authors: Ye Liu, Kai Zhang, Aoran Gan, Linan Yue, Feng Hu, Qi Liu, Enhong Chen,
- Abstract summary: Few-Shot Relation Extraction (FSRE) appeals to more researchers in Natural Language Processing (NLP)
Recent emergence of Large Language Models (LLMs) has prompted numerous researchers to explore FSRE through In-Context Learning (ICL)
- Score: 48.846159555253834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-Shot Relation Extraction (FSRE), a subtask of Relation Extraction (RE) that utilizes limited training instances, appeals to more researchers in Natural Language Processing (NLP) due to its capability to extract textual information in extremely low-resource scenarios. The primary methodologies employed for FSRE have been fine-tuning or prompt tuning techniques based on Pre-trained Language Models (PLMs). Recently, the emergence of Large Language Models (LLMs) has prompted numerous researchers to explore FSRE through In-Context Learning (ICL). However, there are substantial limitations associated with methods based on either traditional RE models or LLMs. Traditional RE models are hampered by a lack of necessary prior knowledge, while LLMs fall short in their task-specific capabilities for RE. To address these shortcomings, we propose a Dual-System Augmented Relation Extractor (DSARE), which synergistically combines traditional RE models with LLMs. Specifically, DSARE innovatively injects the prior knowledge of LLMs into traditional RE models, and conversely enhances LLMs' task-specific aptitude for RE through relation extraction augmentation. Moreover, an Integrated Prediction module is employed to jointly consider these two respective predictions and derive the final results. Extensive experiments demonstrate the efficacy of our proposed method.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - Unleashing the Power of Large Language Models in Zero-shot Relation Extraction via Self-Prompting [21.04933334040135]
We introduce the Self-Prompting framework, a novel method designed to fully harness the embedded RE knowledge within Large Language Models.
Our framework employs a three-stage diversity approach to prompt LLMs, generating multiple synthetic samples that encapsulate specific relations from scratch.
Experimental evaluations on benchmark datasets show our approach outperforms existing LLM-based zero-shot RE methods.
arXiv Detail & Related papers (2024-10-02T01:12:54Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
Relation Extraction (RE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs)
Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area.
This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach.
arXiv Detail & Related papers (2024-06-20T21:27:57Z) - SLMRec: Empowering Small Language Models for Sequential Recommendation [38.51895517016953]
Sequential Recommendation task involves predicting the next item a user is likely to interact with, given their past interactions.
Recent research demonstrates the great impact of LLMs on sequential recommendation systems.
Due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms.
arXiv Detail & Related papers (2024-05-28T07:12:06Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Recall, Retrieve and Reason: Towards Better In-Context Relation Extraction [11.535892987373947]
Relation extraction (RE) aims to identify relations between entities mentioned in texts.
Large language models (LLMs) have demonstrated impressive in-context learning abilities in various tasks.
LLMs suffer from poor performances compared to most supervised fine-tuned RE methods.
arXiv Detail & Related papers (2024-04-27T07:12:52Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.