SpreadsheetLLM: Encoding Spreadsheets for Large Language Models
- URL: http://arxiv.org/abs/2407.09025v1
- Date: Fri, 12 Jul 2024 06:34:21 GMT
- Title: SpreadsheetLLM: Encoding Spreadsheets for Large Language Models
- Authors: Yuzhang Tian, Jianbo Zhao, Haoyu Dong, Junyu Xiong, Shiyu Xia, Mengyu Zhou, Yun Lin, José Cambronero, Yeye He, Shi Han, Dongmei Zhang,
- Abstract summary: SpreadsheetLLM is an efficient encoding method designed to unleash and optimize large language models (LLMs) on spreadsheets.
We develop SheetCompressor, an innovative encoding framework that compresses spreadsheets effectively for LLMs.
Fine-tuned LLM with SheetCompressor has an average compression ratio of 25 times, but achieves a state-of-the-art 78.9% F1 score, surpassing the best existing models by 12.3%.
- Score: 44.08092362611575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spreadsheets, with their extensive two-dimensional grids, various layouts, and diverse formatting options, present notable challenges for large language models (LLMs). In response, we introduce SpreadsheetLLM, pioneering an efficient encoding method designed to unleash and optimize LLMs' powerful understanding and reasoning capability on spreadsheets. Initially, we propose a vanilla serialization approach that incorporates cell addresses, values, and formats. However, this approach was limited by LLMs' token constraints, making it impractical for most applications. To tackle this challenge, we develop SheetCompressor, an innovative encoding framework that compresses spreadsheets effectively for LLMs. It comprises three modules: structural-anchor-based compression, inverse index translation, and data-format-aware aggregation. It significantly improves performance in spreadsheet table detection task, outperforming the vanilla approach by 25.6% in GPT4's in-context learning setting. Moreover, fine-tuned LLM with SheetCompressor has an average compression ratio of 25 times, but achieves a state-of-the-art 78.9% F1 score, surpassing the best existing models by 12.3%. Finally, we propose Chain of Spreadsheet for downstream tasks of spreadsheet understanding and validate in a new and demanding spreadsheet QA task. We methodically leverage the inherent layout and structure of spreadsheets, demonstrating that SpreadsheetLLM is highly effective across a variety of spreadsheet tasks.
Related papers
- SpreadsheetBench: Towards Challenging Real World Spreadsheet Manipulation [34.8332394229927]
SpreadsheetBench is designed to immerse current large language models (LLMs) in the actual workflow of spreadsheet users.
Unlike existing benchmarks that rely on synthesized queries and simplified spreadsheet files, SpreadsheetBench is built from 912 real questions gathered from online Excel forums.
Our comprehensive evaluation of various LLMs under both single-round and multi-round inference settings reveals a substantial gap between the state-of-the-art (SOTA) models and human performance.
arXiv Detail & Related papers (2024-06-21T09:06:45Z) - An Automatic Prompt Generation System for Tabular Data Tasks [3.117741687220381]
Large language models (LLMs) have demonstrated their ability on several tasks through carefully crafted prompts.
This paper presents an innovative auto-prompt generation system suitable for multiple LLMs, with minimal training.
arXiv Detail & Related papers (2024-05-09T08:32:55Z) - TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios [52.73289223176475]
TableLLM is a robust large language model (LLM) with 13 billion parameters.
TableLLM is purpose-built for proficiently handling data manipulation tasks.
We have released the model checkpoint, source code, benchmarks, and a web application for user interaction.
arXiv Detail & Related papers (2024-03-28T11:21:12Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - Benchmarking Diverse-Modal Entity Linking with Generative Models [78.93737257356784]
We construct a benchmark for diverse-modal EL (DMEL) from existing EL datasets.
To approach the DMEL task, we proposed a generative diverse-modal model (GDMM) following a multimodal-encoder-decoder paradigm.
GDMM builds a stronger DMEL baseline, outperforming state-of-the-art task-specific EL models by 8.51 F1 score on average.
arXiv Detail & Related papers (2023-05-27T02:38:46Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Spreadsheet computing with Finite Domain Constraint Enhancements [0.0]
We present a framework seamlessly incorporating a finite constraint solver with the spreadsheet computing paradigm.
The framework provides an interface for constraint solving and further enhances the spreadsheet computing paradigm.
arXiv Detail & Related papers (2022-02-22T17:50:48Z) - SpreadsheetCoder: Formula Prediction from Semi-structured Context [70.41579328458116]
We propose a BERT-based model architecture to represent the tabular context in both row-based and column-based formats.
We train our model on a large dataset of spreadsheets, and demonstrate that SpreadsheetCoder achieves top-1 prediction accuracy of 42.51%.
Compared to the rule-based system, SpreadsheetCoder 82% assists more users in composing formulas on Google Sheets.
arXiv Detail & Related papers (2021-06-26T11:26:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.