Generating $SROI^-$ Ontologies via Knowledge Graph Query Embedding Learning
- URL: http://arxiv.org/abs/2407.09212v4
- Date: Tue, 27 Aug 2024 13:40:13 GMT
- Title: Generating $SROI^-$ Ontologies via Knowledge Graph Query Embedding Learning
- Authors: Yunjie He, Daniel Hernandez, Mojtaba Nayyeri, Bo Xiong, Yuqicheng Zhu, Evgeny Kharlamov, Steffen Staab,
- Abstract summary: We propose a novel query embedding method, AConE, which explains the knowledge learned from the graph in the form of $SROI-$ description logic axioms.
AConE achieves superior results over previous baselines with fewer parameters.
We provide comprehensive analyses showing that the capability to represent axioms positively impacts the results of query answering.
- Score: 26.905431434167536
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Query embedding approaches answer complex logical queries over incomplete knowledge graphs (KGs) by computing and operating on low-dimensional vector representations of entities, relations, and queries. However, current query embedding models heavily rely on excessively parameterized neural networks and cannot explain the knowledge learned from the graph. We propose a novel query embedding method, AConE, which explains the knowledge learned from the graph in the form of $SROI^-$ description logic axioms while being more parameter-efficient than most existing approaches. AConE associates queries to a $SROI^-$ description logic concept. Every $SROI^-$ concept is embedded as a cone in complex vector space, and each $SROI^-$ relation is embedded as a transformation that rotates and scales cones. We show theoretically that AConE can learn $SROI^-$ axioms, and defines an algebra whose operations correspond one to one to $SROI^-$ description logic concept constructs. Our empirical study on multiple query datasets shows that AConE achieves superior results over previous baselines with fewer parameters. Notably on the WN18RR dataset, AConE achieves significant improvement over baseline models. We provide comprehensive analyses showing that the capability to represent axioms positively impacts the results of query answering.
Related papers
- Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Meta Operator for Complex Query Answering on Knowledge Graphs [58.340159346749964]
We argue that different logical operator types, rather than the different complex query types, are the key to improving generalizability.
We propose a meta-learning algorithm to learn the meta-operators with limited data and adapt them to different instances of operators under various complex queries.
Empirical results show that learning meta-operators is more effective than learning original CQA or meta-CQA models.
arXiv Detail & Related papers (2024-03-15T08:54:25Z) - $\text{EFO}_{k}$-CQA: Towards Knowledge Graph Complex Query Answering
beyond Set Operation [36.77373013615789]
We propose a framework for data generation, model training, and method evaluation.
We construct a dataset, $textEFO_k$-CQA, with 741 types of query for empirical evaluation.
arXiv Detail & Related papers (2023-07-15T13:18:20Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning.
We introduce the concept of Neural Graph Database (NGDBs)
NGDB consists of a Neural Graph Storage and a Neural Graph Engine.
arXiv Detail & Related papers (2023-03-26T04:03:37Z) - Modeling Relational Patterns for Logical Query Answering over Knowledge Graphs [29.47155614953955]
We develop a novel query embedding method, RoConE, that defines query regions as geometric cones and algebraic query operators by rotations in complex space.
Our experimental results on several benchmark datasets confirm the advantage of relational patterns for enhancing logical query answering task.
arXiv Detail & Related papers (2023-03-21T13:59:15Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - Neural Methods for Logical Reasoning Over Knowledge Graphs [14.941769519278745]
We focus on answering multi-hop logical queries on Knowledge Graphs (KGs)
Most previous works have been unable to create models that accept full First-Order Logical (FOL) queries.
We introduce a set of models that use Neural Networks to create one-point vector embeddings to answer the queries.
arXiv Detail & Related papers (2022-09-28T23:10:09Z) - Neural-Symbolic Models for Logical Queries on Knowledge Graphs [17.290758383645567]
We propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds.
GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets.
Experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries.
arXiv Detail & Related papers (2022-05-16T18:39:04Z) - ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs [73.86041481470261]
Cone Embeddings (ConE) is the first geometry-based query embedding model that can handle conjunction, disjunction, and negation.
ConE significantly outperforms existing state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2021-10-26T14:04:02Z) - Query2box: Reasoning over Knowledge Graphs in Vector Space using Box
Embeddings [84.0206612938464]
query2box is an embedding-based framework for reasoning over arbitrary queries on incomplete knowledge graphs.
We show that query2box is capable of handling arbitrary logical queries with $wedge$, $vee$, $exists$ in a scalable manner.
We demonstrate the effectiveness of query2box on three large KGs and show that query2box achieves up to 25% relative improvement over the state of the art.
arXiv Detail & Related papers (2020-02-14T11:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.