Open-Canopy: A Country-Scale Benchmark for Canopy Height Estimation at Very High Resolution
- URL: http://arxiv.org/abs/2407.09392v2
- Date: Thu, 18 Jul 2024 11:03:59 GMT
- Title: Open-Canopy: A Country-Scale Benchmark for Canopy Height Estimation at Very High Resolution
- Authors: Fajwel Fogel, Yohann Perron, Nikola Besic, Laurent Saint-André, Agnès Pellissier-Tanon, Martin Schwartz, Thomas Boudras, Ibrahim Fayad, Alexandre d'Aspremont, Loic Landrieu, Philippe Ciais,
- Abstract summary: We introduce Open-Canopy, the first open-access and country-scale benchmark for very high resolution (1.5 m) canopy height estimation.
We also propose Open-Canopy-$Delta$, the first benchmark for canopy height change detection between two images taken at different years.
- Score: 37.96456541856852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating canopy height and canopy height change at meter resolution from satellite imagery has numerous applications, such as monitoring forest health, logging activities, wood resources, and carbon stocks. However, many existing forest datasets are based on commercial or closed data sources, restricting the reproducibility and evaluation of new approaches. To address this gap, we introduce Open-Canopy, the first open-access and country-scale benchmark for very high resolution (1.5 m) canopy height estimation. Covering more than 87,000 km$^2$ across France, Open-Canopy combines SPOT satellite imagery with high resolution aerial LiDAR data. We also propose Open-Canopy-$\Delta$, the first benchmark for canopy height change detection between two images taken at different years, a particularly challenging task even for recent models. To establish a robust foundation for these benchmarks, we evaluate a comprehensive list of state-of-the-art computer vision models for canopy height estimation. The dataset and associated codes can be accessed at https://github.com/fajwel/Open-Canopy.
Related papers
- Depth Any Canopy: Leveraging Depth Foundation Models for Canopy Height Estimation [4.69726714177332]
Estimating global tree canopy height is crucial for forest conservation and climate change applications.
An efficient alternative is to train a canopy height estimator to operate on single-view remotely sensed imagery.
Recent monocular depth estimation foundation models have show strong zero-shot performance even for complex scenes.
arXiv Detail & Related papers (2024-08-08T15:24:07Z) - OAM-TCD: A globally diverse dataset of high-resolution tree cover maps [8.336960607169175]
We present a novel open-access dataset for individual tree crown delineation (TCD) in high-resolution aerial imagery sourced from OpenMap (OAM)
Our dataset, OAM-TCD, comprises 5072 2048x2048px images at 10 cm/px resolution with associated human-labeled instance masks for over 280k individual and 56k groups of trees.
Using our dataset, we train reference instance and semantic segmentation models that compare favorably to existing state-of-the-art models.
arXiv Detail & Related papers (2024-07-16T14:11:29Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning [1.6889377382676625]
We release a large dataset of individual shrub delineations on freely available satellite imagery.
We use an instance segmentation model to map all junipers over the treeline for an entire biosphere reserve.
Our model achieved an F1-score in shrub delineation of 87.87% on the PI data and 76.86% on the FW data.
arXiv Detail & Related papers (2024-01-31T16:44:20Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
We present a new vision transformer (ViT) model optimized with a classification (discrete) and a continuous loss function.
This model achieves better accuracy than previously used convolutional based approaches (ConvNets) optimized with only a continuous loss function.
arXiv Detail & Related papers (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions.
The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020.
We also introduce a post-processing step using a convolutional network trained on GEDI observations.
arXiv Detail & Related papers (2023-04-14T15:52:57Z) - High-resolution canopy height map in the Landes forest (France) based on
GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach [0.044381279572631216]
We develop a deep learning model based on multi-stream remote sensing measurements to create a high-resolution canopy height map.
The model outputs allow us to generate a 10 m resolution canopy height map of the whole "Landes de Gascogne" forest area for 2020.
For all validation datasets in coniferous forests, our model showed better metrics than previous canopy height models available in the same region.
arXiv Detail & Related papers (2022-12-20T14:14:37Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
We show that High-Definition (HD) maps provide strong priors that can boost the performance and robustness of modern 3D object detectors.
We design a single stage detector that extracts geometric and semantic features from the HD maps.
As maps might not be available everywhere, we also propose a map prediction module that estimates the map on the fly from raw LiDAR data.
arXiv Detail & Related papers (2020-12-21T21:59:54Z) - AutoPose: Searching Multi-Scale Branch Aggregation for Pose Estimation [96.29533512606078]
We present AutoPose, a novel neural architecture search(NAS) framework.
It is capable of automatically discovering multiple parallel branches of cross-scale connections towards accurate and high-resolution 2D human pose estimation.
arXiv Detail & Related papers (2020-08-16T22:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.