A Benchmark Environment for Offline Reinforcement Learning in Racing Games
- URL: http://arxiv.org/abs/2407.09415v1
- Date: Fri, 12 Jul 2024 16:44:03 GMT
- Title: A Benchmark Environment for Offline Reinforcement Learning in Racing Games
- Authors: Girolamo Macaluso, Alessandro Sestini, Andrew D. Bagdanov,
- Abstract summary: Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL)
This paper introduces OfflineMania, a novel environment for ORL research.
It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine.
- Score: 54.83171948184851
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL) by eliminating the need for continuous environmental interactions. ORL exploits a dataset of pre-collected transitions and thus expands the range of application of RL to tasks in which the excessive environment queries increase training time and decrease efficiency, such as in modern AAA games. This paper introduces OfflineMania a novel environment for ORL research. It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine. The environment simulates a single-agent racing game in which the objective is to complete the track through optimal navigation. We provide a variety of datasets to assess ORL performance. These datasets, created from policies of varying ability and in different sizes, aim to offer a challenging testbed for algorithm development and evaluation. We further establish a set of baselines for a range of Online RL, ORL, and hybrid Offline to Online RL approaches using our environment.
Related papers
- D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Preference Elicitation for Offline Reinforcement Learning [59.136381500967744]
We propose Sim-OPRL, an offline preference-based reinforcement learning algorithm.
Our algorithm employs a pessimistic approach for out-of-distribution data, and an optimistic approach for acquiring informative preferences about the optimal policy.
arXiv Detail & Related papers (2024-06-26T15:59:13Z) - H2O+: An Improved Framework for Hybrid Offline-and-Online RL with
Dynamics Gaps [31.608209251850553]
We develop a new algorithm, called H2O+, which offers great flexibility to bridge various choices of offline and online learning methods.
We demonstrate superior performance and flexibility over advanced cross-domain online and offline RL algorithms.
arXiv Detail & Related papers (2023-09-22T08:58:22Z) - A Survey on Model-based Reinforcement Learning [21.85904195671014]
Reinforcement learning (RL) solves sequential decision-making problems via a trial-and-error process interacting with the environment.
Model-based reinforcement learning (MBRL) is believed to be a promising direction, which builds environment models in which the trial-and-errors can take place without real costs.
arXiv Detail & Related papers (2022-06-19T05:28:03Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z) - RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning [108.9599280270704]
We propose a benchmark called RL Unplugged to evaluate and compare offline RL methods.
RL Unplugged includes data from a diverse range of domains including games and simulated motor control problems.
We will release data for all our tasks and open-source all algorithms presented in this paper.
arXiv Detail & Related papers (2020-06-24T17:14:51Z) - The NetHack Learning Environment [79.06395964379107]
We present the NetHack Learning Environment (NLE), a procedurally generated rogue-like environment for Reinforcement Learning research.
We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL.
We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration.
arXiv Detail & Related papers (2020-06-24T14:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.