StyleSplat: 3D Object Style Transfer with Gaussian Splatting
- URL: http://arxiv.org/abs/2407.09473v1
- Date: Fri, 12 Jul 2024 17:55:08 GMT
- Title: StyleSplat: 3D Object Style Transfer with Gaussian Splatting
- Authors: Sahil Jain, Avik Kuthiala, Prabhdeep Singh Sethi, Prakanshul Saxena,
- Abstract summary: Style transfer can enhance 3D assets with diverse artistic styles, transforming creative expression.
We introduce StyleSplat, a method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images.
We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
- Score: 0.3374875022248866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in radiance fields have opened new avenues for creating high-quality 3D assets and scenes. Style transfer can enhance these 3D assets with diverse artistic styles, transforming creative expression. However, existing techniques are often slow or unable to localize style transfer to specific objects. We introduce StyleSplat, a lightweight method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images. Our approach first learns a photorealistic representation of the scene using 3D Gaussian splatting while jointly segmenting individual 3D objects. We then use a nearest-neighbor feature matching loss to finetune the Gaussians of the selected objects, aligning their spherical harmonic coefficients with the style image to ensure consistency and visual appeal. StyleSplat allows for quick, customizable style transfer and localized stylization of multiple objects within a scene, each with a different style. We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
Related papers
- AI-Driven Stylization of 3D Environments [1.1097407843705314]
We discuss methods to stylize a scene of 3D primitive objects into a higher fidelity 3D scene using novel 3D representations like NeRFs and 3D Gaussian Splatting.
Our approach leverages existing image stylization systems and image-to-3D generative models to create a pipeline that iteratively stylizes and composites 3D objects into scenes.
arXiv Detail & Related papers (2024-11-09T04:51:17Z) - Gaussian Splatting in Style [32.41970914897462]
3D sceneization extends the work of neural style transfer to 3D.
A vital challenge in this problem is to maintain the uniformity of the stylized appearance across multiple views.
We propose a novel architecture trained on a collection of style images that, at test time, produces real time high-quality stylized novel views.
arXiv Detail & Related papers (2024-03-13T13:06:31Z) - PNeSM: Arbitrary 3D Scene Stylization via Prompt-Based Neural Style
Mapping [16.506819625584654]
3D scene stylization refers to transform the appearance of a 3D scene to match a given style image.
Several existing methods have obtained impressive results in stylizing 3D scenes.
We propose a novel 3D scene stylization framework to transfer an arbitrary style to an arbitrary scene.
arXiv Detail & Related papers (2024-03-13T05:08:47Z) - StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting [141.05924680451804]
StyleGaussian is a novel 3D style transfer technique.
It allows instant transfer of any image's style to a 3D scene at 10 frames per second (fps)
arXiv Detail & Related papers (2024-03-12T16:44:52Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets.
We introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text.
arXiv Detail & Related papers (2023-12-13T18:59:30Z) - S2RF: Semantically Stylized Radiance Fields [1.243080988483032]
We present our method for transferring style from any arbitrary image(s) to object(s) within a 3D scene.
Our primary objective is to offer more control in 3D scene stylization, facilitating the creation of customizable and stylized scene images from arbitrary viewpoints.
arXiv Detail & Related papers (2023-09-03T19:32:49Z) - HyperStyle3D: Text-Guided 3D Portrait Stylization via Hypernetworks [101.36230756743106]
This paper is inspired by the success of 3D-aware GANs that bridge 2D and 3D domains with 3D fields as the intermediate representation for rendering 2D images.
We propose a novel method, dubbed HyperStyle3D, based on 3D-aware GANs for 3D portrait stylization.
arXiv Detail & Related papers (2023-04-19T07:22:05Z) - StyleRF: Zero-shot 3D Style Transfer of Neural Radiance Fields [52.19291190355375]
StyleRF (Style Radiance Fields) is an innovative 3D style transfer technique.
It employs an explicit grid of high-level features to represent 3D scenes, with which high-fidelity geometry can be reliably restored via volume rendering.
It transforms the grid features according to the reference style which directly leads to high-quality zero-shot style transfer.
arXiv Detail & Related papers (2023-03-19T08:26:06Z) - StyleMesh: Style Transfer for Indoor 3D Scene Reconstructions [11.153966202832933]
We apply style transfer on mesh reconstructions of indoor scenes.
This enables VR applications like experiencing 3D environments painted in the style of a favorite artist.
arXiv Detail & Related papers (2021-12-02T18:59:59Z) - 3DStyleNet: Creating 3D Shapes with Geometric and Texture Style
Variations [81.45521258652734]
We propose a method to create plausible geometric and texture style variations of 3D objects.
Our method can create many novel stylized shapes, resulting in effortless 3D content creation and style-ware data augmentation.
arXiv Detail & Related papers (2021-08-30T02:28:31Z) - 3DSNet: Unsupervised Shape-to-Shape 3D Style Transfer [66.48720190245616]
We propose a learning-based approach for style transfer between 3D objects.
The proposed method can synthesize new 3D shapes both in the form of point clouds and meshes.
We extend our technique to implicitly learn the multimodal style distribution of the chosen domains.
arXiv Detail & Related papers (2020-11-26T16:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.