Mixed-View Panorama Synthesis using Geospatially Guided Diffusion
- URL: http://arxiv.org/abs/2407.09672v1
- Date: Fri, 12 Jul 2024 20:12:07 GMT
- Title: Mixed-View Panorama Synthesis using Geospatially Guided Diffusion
- Authors: Zhexiao Xiong, Xin Xing, Scott Workman, Subash Khanal, Nathan Jacobs,
- Abstract summary: We introduce the task of mixed-view panorama synthesis.
The goal is to synthesize a novel panorama given a small set of input panoramas and a satellite image of the area.
- Score: 15.12293324464805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the task of mixed-view panorama synthesis, where the goal is to synthesize a novel panorama given a small set of input panoramas and a satellite image of the area. This contrasts with previous work which only uses input panoramas (same-view synthesis), or an input satellite image (cross-view synthesis). We argue that the mixed-view setting is the most natural to support panorama synthesis for arbitrary locations worldwide. A critical challenge is that the spatial coverage of panoramas is uneven, with few panoramas available in many regions of the world. We introduce an approach that utilizes diffusion-based modeling and an attention-based architecture for extracting information from all available input imagery. Experimental results demonstrate the effectiveness of our proposed method. In particular, our model can handle scenarios when the available panoramas are sparse or far from the location of the panorama we are attempting to synthesize.
Related papers
- DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion [60.45000652592418]
We propose a novel text-driven panoramic generation framework, DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation.
We show that DiffPano can generate consistent, diverse panoramic images with given unseen text descriptions and camera poses.
arXiv Detail & Related papers (2024-10-31T17:57:02Z) - Pano2Room: Novel View Synthesis from a Single Indoor Panorama [20.262621556667852]
Pano2Room is designed to automatically reconstruct high-quality 3D indoor scenes from a single panoramic image.
The key idea is to initially construct a preliminary mesh from the input panorama, and iteratively refine this mesh using a panoramic RGBD inpainter.
The refined mesh is converted into a 3D Gaussian Splatting field and trained with the collected pseudo novel views.
arXiv Detail & Related papers (2024-08-21T08:19:12Z) - SAMPLING: Scene-adaptive Hierarchical Multiplane Images Representation
for Novel View Synthesis from a Single Image [60.52991173059486]
We introduce SAMPLING, a Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image.
Our method demonstrates considerable performance gains in large-scale unbounded outdoor scenes using a single image on the KITTI dataset.
arXiv Detail & Related papers (2023-09-12T15:33:09Z) - PanoSwin: a Pano-style Swin Transformer for Panorama Understanding [15.115868803355081]
equirectangular projection (ERP) entails boundary discontinuity and spatial distortion.
We propose PanoSwin to learn panorama representations with ERP.
We conduct experiments against the state-of-the-art on various panoramic tasks.
arXiv Detail & Related papers (2023-08-28T17:30:14Z) - PanoGRF: Generalizable Spherical Radiance Fields for Wide-baseline
Panoramas [54.4948540627471]
We propose PanoGRF, Generalizable Spherical Radiance Fields for Wide-baseline Panoramas.
Unlike generalizable radiance fields trained on perspective images, PanoGRF avoids the information loss from panorama-to-perspective conversion.
Results on multiple panoramic datasets demonstrate that PanoGRF significantly outperforms state-of-the-art generalizable view synthesis methods.
arXiv Detail & Related papers (2023-06-02T13:35:07Z) - HORIZON: High-Resolution Semantically Controlled Panorama Synthesis [105.55531244750019]
Panorama synthesis endeavors to craft captivating 360-degree visual landscapes, immersing users in the heart of virtual worlds.
Recent breakthroughs in visual synthesis have unlocked the potential for semantic control in 2D flat images, but a direct application of these methods to panorama synthesis yields distorted content.
We unveil an innovative framework for generating high-resolution panoramas, adeptly addressing the issues of spherical distortion and edge discontinuity through sophisticated spherical modeling.
arXiv Detail & Related papers (2022-10-10T09:43:26Z) - OmniSyn: Synthesizing 360 Videos with Wide-baseline Panoramas [27.402727637562403]
Google Street View and Bing Streetside provide immersive maps with a massive collection of panoramas.
These panoramas are only available at sparse intervals along the path they are taken, resulting in visual discontinuities during navigation.
We present OmniSyn, a novel pipeline for 360deg view synthesis between wide-baseline panoramas.
arXiv Detail & Related papers (2022-02-17T16:44:17Z) - Moving in a 360 World: Synthesizing Panoramic Parallaxes from a Single
Panorama [13.60790015417166]
We present Omnidirectional Neural Radiance Fields ( OmniNeRF), the first method to the application of parallax-enabled novel panoramic view synthesis.
We propose to augment the single RGB-D panorama by projecting back and forth between a 3D world and different 2D panoramic coordinates at different virtual camera positions.
As a result, the proposed OmniNeRF achieves convincing renderings of novel panoramic views that exhibit the parallax effect.
arXiv Detail & Related papers (2021-06-21T05:08:34Z) - Free View Synthesis [100.86844680362196]
We present a method for novel view synthesis from input images that are freely distributed around a scene.
Our method does not rely on a regular arrangement of input views, can synthesize images for free camera movement through the scene, and works for general scenes with unconstrained geometric layouts.
arXiv Detail & Related papers (2020-08-12T18:16:08Z) - Example-Guided Image Synthesis across Arbitrary Scenes using Masked
Spatial-Channel Attention and Self-Supervision [83.33283892171562]
Example-guided image synthesis has recently been attempted to synthesize an image from a semantic label map and an exemplary image.
In this paper, we tackle a more challenging and general task, where the exemplar is an arbitrary scene image that is semantically different from the given label map.
We propose an end-to-end network for joint global and local feature alignment and synthesis.
arXiv Detail & Related papers (2020-04-18T18:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.