Preserving the Privacy of Reward Functions in MDPs through Deception
- URL: http://arxiv.org/abs/2407.09809v1
- Date: Sat, 13 Jul 2024 09:03:22 GMT
- Title: Preserving the Privacy of Reward Functions in MDPs through Deception
- Authors: Shashank Reddy Chirra, Pradeep Varakantham, Praveen Paruchuri,
- Abstract summary: Preserving the privacy of preferences (or rewards) of a sequential decision-making agent when decisions are observable is crucial in many physical and cybersecurity domains.
This paper addresses privacy preservation in planning over a sequence of actions in MDPs, where the reward function represents the preference structure to be protected.
- Score: 13.664014596337037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preserving the privacy of preferences (or rewards) of a sequential decision-making agent when decisions are observable is crucial in many physical and cybersecurity domains. For instance, in wildlife monitoring, agents must allocate patrolling resources without revealing animal locations to poachers. This paper addresses privacy preservation in planning over a sequence of actions in MDPs, where the reward function represents the preference structure to be protected. Observers can use Inverse RL (IRL) to learn these preferences, making this a challenging task. Current research on differential privacy in reward functions fails to ensure guarantee on the minimum expected reward and offers theoretical guarantees that are inadequate against IRL-based observers. To bridge this gap, we propose a novel approach rooted in the theory of deception. Deception includes two models: dissimulation (hiding the truth) and simulation (showing the wrong). Our first contribution theoretically demonstrates significant privacy leaks in existing dissimulation-based methods. Our second contribution is a novel RL-based planning algorithm that uses simulation to effectively address these privacy concerns while ensuring a guarantee on the expected reward. Experiments on multiple benchmark problems show that our approach outperforms previous methods in preserving reward function privacy.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Chained-DP: Can We Recycle Privacy Budget? [18.19895364709435]
We propose a novel Chained-DP framework enabling users to carry out data aggregation sequentially to recycle the privacy budget.
We show the mathematical nature of the sequential game, solve its Nash Equilibrium, and design an incentive mechanism with provable economic properties.
Our numerical simulation validates the effectiveness of Chained-DP, showing that it can significantly save privacy budget and lower estimation error compared to the traditional LDP mechanism.
arXiv Detail & Related papers (2023-09-12T08:07:59Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Rethinking Disclosure Prevention with Pointwise Maximal Leakage [36.3895452861944]
We propose a general model of utility and privacy in which utility is achieved by disclosing the value of low-entropy features of a secret $X$.
We prove that, contrary to popular opinion, it is possible to provide meaningful inferential privacy guarantees.
We show that PML-based privacy is compatible with and provides insights into existing notions such as differential privacy.
arXiv Detail & Related papers (2023-03-14T10:47:40Z) - Privacy in Practice: Private COVID-19 Detection in X-Ray Images
(Extended Version) [3.750713193320627]
We create machine learning models that satisfy Differential Privacy (DP)
We evaluate the utility-privacy trade-off more extensively and over stricter privacy budgets.
Our results indicate that needed privacy levels might differ based on the task-dependent practical threat from MIAs.
arXiv Detail & Related papers (2022-11-21T13:22:29Z) - Privacy-Preserving Distributed Expectation Maximization for Gaussian
Mixture Model using Subspace Perturbation [4.2698418800007865]
federated learning is motivated by the privacy concern as it does not allow to transmit private data but only intermediate updates.
We propose a fully decentralized privacy-preserving solution, which is able to securely compute the updates in each step.
Numerical validation shows that the proposed approach has superior performance compared to the existing approach in terms of both the accuracy and privacy level.
arXiv Detail & Related papers (2022-09-16T09:58:03Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.