sPhinX: Sample Efficient Multilingual Instruction Fine-Tuning Through N-shot Guided Prompting
- URL: http://arxiv.org/abs/2407.09879v3
- Date: Wed, 16 Oct 2024 12:57:56 GMT
- Title: sPhinX: Sample Efficient Multilingual Instruction Fine-Tuning Through N-shot Guided Prompting
- Authors: Sanchit Ahuja, Kumar Tanmay, Hardik Hansrajbhai Chauhan, Barun Patra, Kriti Aggarwal, Luciano Del Corro, Arindam Mitra, Tejas Indulal Dhamecha, Ahmed Awadallah, Monojit Choudhary, Vishrav Chaudhary, Sunayana Sitaram,
- Abstract summary: We introduce a novel recipe for creating a multilingual synthetic instruction tuning dataset, sPhinX.
sPhinX is created by selectively translating instruction response pairs from English into 50 languages.
We test the effectiveness of sPhinx by using it to fine-tune two state-of-the-art models, Mistral-7B and Phi-Small.
- Score: 29.63634707674839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable success of LLMs in English, there is a significant gap in performance in non-English languages. In order to address this, we introduce a novel recipe for creating a multilingual synthetic instruction tuning dataset, sPhinX, which is created by selectively translating instruction response pairs from English into 50 languages. We test the effectiveness of sPhinx by using it to fine-tune two state-of-the-art models, Mistral-7B and Phi-Small and then evaluating them across a comprehensive suite of multilingual benchmarks that test reasoning, question answering, reading comprehension and machine translation. Our results show that Mistral-7B and Phi-Small fine-tuned with sPhinX perform better on an average by 5%pt for both the models when compared to the base variants of these models. We also devise a strategy to incorporate N-shot examples in each fine-tuning sample which further boosts the performance of these models by 9%pt and 4%pt respectively respectively compared to vanilla fine-tuning. To show efficacy of our data curation approach, we also directly translate our original dataset to the target languages, and observe an increase of 7%pt and 4%pt on both the models respectively. sPhinX outperforms other multilingual instruction tuning datasets in both efficiency and diversity, reducing dataset creation costs. It also maintains strong performance on standard English LLM benchmarks, with minimal regression.
Related papers
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - GeMQuAD : Generating Multilingual Question Answering Datasets from Large Language Models using Few Shot Learning [4.8838210812204235]
In this paper, we propose GeMQuAD - a semi-supervised learning approach, applied to a dataset generated through ICL with just one example in the target language.
We iteratively identify high-quality data to enhance model performance, especially for low-resource multilingual setting.
Our framework outperforms the machine translation-augmented model by 0.22/1.68 F1/EM points for Hindi and 0.82/1.37 F1/EM points for Spanish on the MLQA dataset.
arXiv Detail & Related papers (2024-04-14T06:55:42Z) - Improving Domain-Specific Retrieval by NLI Fine-Tuning [64.79760042717822]
This article investigates the fine-tuning potential of natural language inference (NLI) data to improve information retrieval and ranking.
We employ both monolingual and multilingual sentence encoders fine-tuned by a supervised method utilizing contrastive loss and NLI data.
Our results point to the fact that NLI fine-tuning increases the performance of the models in both tasks and both languages, with the potential to improve mono- and multilingual models.
arXiv Detail & Related papers (2023-08-06T12:40:58Z) - LLM-powered Data Augmentation for Enhanced Cross-lingual Performance [24.20730298894794]
This paper explores the potential of leveraging Large Language Models (LLMs) for data augmentation in commonsense reasoning datasets.
To achieve this, we utilise several LLMs, namely Dolly-v2, StableVicuna, ChatGPT, and GPT-4, to augment three datasets: XCOPA, XWinograd, and XStoryCloze.
We evaluate the effectiveness of fine-tuning smaller multilingual models, mBERT and XLMR, using the synthesised data.
arXiv Detail & Related papers (2023-05-23T17:33:27Z) - Prompt-Tuning Can Be Much Better Than Fine-Tuning on Cross-lingual
Understanding With Multilingual Language Models [95.32691891392903]
In this paper, we do cross-lingual evaluation on various NLU tasks using prompt-tuning and compare it with fine-tuning.
The results show that prompt tuning achieves much better cross-lingual transfer than fine-tuning across datasets.
arXiv Detail & Related papers (2022-10-22T05:48:02Z) - OneAligner: Zero-shot Cross-lingual Transfer with One Rich-Resource
Language Pair for Low-Resource Sentence Retrieval [91.76575626229824]
We present OneAligner, an alignment model specially designed for sentence retrieval tasks.
When trained with all language pairs of a large-scale parallel multilingual corpus (OPUS-100), this model achieves the state-of-the-art result.
We conclude through empirical results and analyses that the performance of the sentence alignment task depends mostly on the monolingual and parallel data size.
arXiv Detail & Related papers (2022-05-17T19:52:42Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - Multilingual BERT Post-Pretraining Alignment [26.62198329830013]
We propose a simple method to align multilingual contextual embeddings as a post-pretraining step.
Using parallel data, our method aligns embeddings on the word level through the recently proposed Translation Language Modeling objective.
We also perform sentence-level code-switching with English when fine on downstream tasks.
arXiv Detail & Related papers (2020-10-23T17:14:41Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.