A Training Data Recipe to Accelerate A* Search with Language Models
- URL: http://arxiv.org/abs/2407.09985v2
- Date: Wed, 23 Oct 2024 22:37:31 GMT
- Title: A Training Data Recipe to Accelerate A* Search with Language Models
- Authors: Devaansh Gupta, Boyang Li,
- Abstract summary: Large Language Models (LLMs) with search algorithms like A* holds the promise of enhanced reasoning and scalable inference.
We empirically disentangle the requirements of A* search algorithm from the requirements of the LLM to generalise on this task.
Our technique reduces the number of iterations required to find the solutions by up to 15x, with a wall-clock speed-up of search up to 5x.
- Score: 3.037409201025504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combining Large Language Models (LLMs) with heuristic search algorithms like A* holds the promise of enhanced LLM reasoning and scalable inference. To accelerate training and reduce computational demands, we investigate the coreset selection problem for the training data of LLM heuristic learning. Few methods to learn the heuristic functions consider the interaction between the search algorithm and the machine learning model. In this work, we empirically disentangle the requirements of A* search algorithm from the requirements of the LLM to generalise on this task. Surprisingly, we find an overlap between their requirements; A* requires more accurate predictions on search nodes near the goal, and LLMs need the same set of nodes for effective generalisation. With these insights, we derive a data-selection distribution for learning LLM-based heuristics. On three classical planning domains, maze navigation, Sokoban and sliding tile puzzles, our technique reduces the number of iterations required to find the solutions by up to 15x, with a wall-clock speed-up of search up to 5x. The codebase is at https://github.com/devaansh100/a_star.
Related papers
- Uncertainty-Guided Optimization on Large Language Model Search Trees [42.71167208999792]
Tree search algorithms such as greedy and beam search are the standard when it comes to finding sequences of maximum likelihood in the decoding processes of large language models (LLMs)
We define prior beliefs over LLMs' transition probabilities and obtain posterior beliefs over the most promising paths in each iteration.
Unlike expensive simulation-based non-myopic methods like the Monte Carlo tree search, our method only requires samples from the beliefs.
arXiv Detail & Related papers (2024-07-04T14:08:50Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - Thought of Search: Planning with Language Models Through The Lens of Efficiency [22.47015814897628]
We argue that recent trends abandon both soundness and completeness for the sake of inefficiency.
We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100% accuracy.
arXiv Detail & Related papers (2024-04-18T01:27:29Z) - Cache & Distil: Optimising API Calls to Large Language Models [82.32065572907125]
Large-scale deployment of generative AI tools often depends on costly API calls to a Large Language Model (LLM) to fulfil user queries.
To curtail the frequency of these calls, one can employ a smaller language model -- a student.
This student gradually gains proficiency in independently handling an increasing number of user requests.
arXiv Detail & Related papers (2023-10-20T15:01:55Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
Large Language Models have excelled in remarkable reasoning capabilities with advanced prompting techniques.
Recent works propose to utilize external programs to define search logic, such that LLMs can perform passive tree search to solve more challenging reasoning tasks.
We propose a new concept called autonomous tree-search ability of LLM, which can automatically generate a response containing search trajectories for the correct answer.
arXiv Detail & Related papers (2023-10-14T14:14:38Z) - Alphazero-like Tree-Search can Guide Large Language Model Decoding and
Training [37.79247073276239]
Recent works like Tree-of-Thought (ToT) and Reasoning via Planning (RAP) aim to augment the reasoning capabilities of LLMs.
We present an AlphaZero-like tree-search learning framework for LLMs (termed TS-LLM)
We show how tree-search with a learned value function can guide LLM decoding.
arXiv Detail & Related papers (2023-09-29T12:20:19Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
We propose a novel strategy that propels Large Language Models through algorithmic reasoning pathways.
Our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself.
arXiv Detail & Related papers (2023-08-20T22:36:23Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.