AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence
- URL: http://arxiv.org/abs/2407.10022v1
- Date: Sat, 13 Jul 2024 22:46:02 GMT
- Title: AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence
- Authors: Alireza Ghafarollahi, Markus J. Buehler,
- Abstract summary: The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLM)
Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The design of alloys is a multi-scale problem that requires a holistic approach that involves retrieving relevant knowledge, applying advanced computational methods, conducting experimental validations, and analyzing the results, a process that is typically reserved for human experts. Machine learning (ML) can help accelerate this process, for instance, through the use of deep surrogate models that connect structural features to material properties, or vice versa. However, existing data-driven models often target specific material objectives, offering limited flexibility to integrate out-of-domain knowledge and cannot adapt to new, unforeseen challenges. Here, we overcome these limitations by leveraging the distinct capabilities of multiple AI agents that collaborate autonomously within a dynamic environment to solve complex materials design tasks. The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLM) the dynamic collaboration among AI agents with expertise in various domains, including knowledge retrieval, multi-modal data integration, physics-based simulations, and comprehensive results analysis across modalities that includes numerical data and images of physical simulation results. The concerted effort of the multi-agent system allows for addressing complex materials design problems, as demonstrated by examples that include autonomously designing metallic alloys with enhanced properties compared to their pure counterparts. Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys. Our framework enhances the efficiency of complex multi-objective design tasks and opens new avenues in fields such as biomedical materials engineering, renewable energy, and environmental sustainability.
Related papers
- Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
A multi-agent AI model is used to automate the discovery of new metallic alloys.
We focus on the NbMoTa family of body-centered cubic (bcc) alloys, modeled using an ML-based interatomic potential.
By synergizing the predictive power of GNNs with the dynamic collaboration of LLM-based agents, the system autonomously navigates vast alloy design spaces.
arXiv Detail & Related papers (2024-10-17T17:06:26Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - HEMM: Holistic Evaluation of Multimodal Foundation Models [91.60364024897653]
Multimodal foundation models can holistically process text alongside images, video, audio, and other sensory modalities.
It is challenging to characterize and study progress in multimodal foundation models, given the range of possible modeling decisions, tasks, and domains.
arXiv Detail & Related papers (2024-07-03T18:00:48Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - ProtAgents: Protein discovery via large language model multi-agent
collaborations combining physics and machine learning [0.0]
ProtAgents is a platform for de novo protein design based on Large Language Models (LLMs)
Multiple AI agents with distinct capabilities collaboratively address complex tasks within a dynamic environment.
The flexibility in designing the agents, on one hand, and their capacity in autonomous collaboration through the dynamic LLM-based multi-agent environment unleashes great potentials.
arXiv Detail & Related papers (2024-01-27T20:19:49Z) - MechAgents: Large language model multi-agent collaborations can solve
mechanics problems, generate new data, and integrate knowledge [0.6708125191843434]
A set of AI agents can solve mechanics tasks, here demonstrated for elasticity problems, via autonomous collaborations.
A two-agent team can effectively write, execute and self-correct code, in order to apply finite element methods to solve classical elasticity problems.
For more complex tasks, we construct a larger group of agents with enhanced division of labor among planning, formulating, coding, executing and criticizing the process and results.
arXiv Detail & Related papers (2023-11-14T13:49:03Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
We review advances in AI-driven materials-by-design and their applications to energetic materials.
We evaluate methods in the literature in terms of their capacity to learn from a small/limited number of data.
We suggest a few promising future research directions for EM materials-by-design, such as meta-learning, active learning, Bayesian learning, and semi-/weakly-supervised learning.
arXiv Detail & Related papers (2022-11-15T14:41:11Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Interpretable Hyperspectral AI: When Non-Convex Modeling meets
Hyperspectral Remote Sensing [57.52865154829273]
Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience remote sensing (RS)
In the past decade efforts have been made to process analyze these hyperspectral (HS) products mainly by means of seasoned experts.
For this reason, it is urgent to develop more intelligent and automatic approaches for various HS RS applications.
arXiv Detail & Related papers (2021-03-02T03:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.