Data Imputation using Large Language Model to Accelerate Recommendation System
- URL: http://arxiv.org/abs/2407.10078v2
- Date: Wed, 7 Aug 2024 21:05:44 GMT
- Title: Data Imputation using Large Language Model to Accelerate Recommendation System
- Authors: Zhicheng Ding, Jiahao Tian, Zhenkai Wang, Jinman Zhao, Siyang Li,
- Abstract summary: We propose a novel approach that fine-tune Large Language Model (LLM) and use it impute missing data for recommendation systems.
LLM which is trained on vast amounts of text, is able to understand complex relationship among data and intelligently fill in missing information.
This enriched data is then used by the recommendation system to generate more accurate and personalized suggestions.
- Score: 3.853804391135035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to address the challenge of sparse and missing data in recommendation systems, a significant hurdle in the age of big data. Traditional imputation methods struggle to capture complex relationships within the data. We propose a novel approach that fine-tune Large Language Model (LLM) and use it impute missing data for recommendation systems. LLM which is trained on vast amounts of text, is able to understand complex relationship among data and intelligently fill in missing information. This enriched data is then used by the recommendation system to generate more accurate and personalized suggestions, ultimately enhancing the user experience. We evaluate our LLM-based imputation method across various tasks within the recommendation system domain, including single classification, multi-classification, and regression compared to traditional data imputation methods. By demonstrating the superiority of LLM imputation over traditional methods, we establish its potential for improving recommendation system performance.
Related papers
- Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - MMREC: LLM Based Multi-Modal Recommender System [2.3113916776957635]
This paper presents a novel approach to enhancing recommender systems by leveraging Large Language Models (LLMs) and deep learning techniques.
The proposed framework aims to improve the accuracy and relevance of recommendations by incorporating multi-modal information processing and by the use of unified latent space representation.
arXiv Detail & Related papers (2024-08-08T04:31:29Z) - Semantic-Enhanced Relational Metric Learning for Recommender Systems [27.330164862413184]
Recently, metric learning methods have been received great attention in recommendation community, which is inspired by the translation mechanism in knowledge graph.
We propose a joint Semantic-Enhanced Metric Learning framework to tackle the problem in recommender systems.
Specifically the semantic signal is first extracted from the target reviews containing abundant features and personalized user preferences.
A novel regression model is then designed via leveraging the extracted semantic signal to improve the discriminative ability of original relation-based training process.
arXiv Detail & Related papers (2024-06-07T11:54:50Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Representation Learning with Large Language Models for Recommendation [34.46344639742642]
We propose a model-agnostic framework RLMRec to enhance recommenders with large language models (LLMs)empowered representation learning.
RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals.
arXiv Detail & Related papers (2023-10-24T15:51:13Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
We consider recommendation as instruction following by large language models (LLMs)
We first design a general instruction format for describing the preference, intention, task form and context of a user in natural language.
Then we manually design 39 instruction templates and automatically generate a large amount of user-personalized instruction data.
arXiv Detail & Related papers (2023-05-11T17:39:07Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Recommendation system using a deep learning and graph analysis approach [1.2183405753834562]
We propose a novel recommendation method based on Matrix Factorization and graph analysis methods.
In addition, we leverage deep Autoencoders to initialize users and items latent factors, and deep embedding method gathers users' latent factors from the user trust graph.
arXiv Detail & Related papers (2020-04-17T08:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.