SACNet: A Spatially Adaptive Convolution Network for 2D Multi-organ Medical Segmentation
- URL: http://arxiv.org/abs/2407.10157v1
- Date: Sun, 14 Jul 2024 10:58:09 GMT
- Title: SACNet: A Spatially Adaptive Convolution Network for 2D Multi-organ Medical Segmentation
- Authors: Lin Zhang, Wenbo Gao, Jie Yi, Yunyun Yang,
- Abstract summary: Multi-organ segmentation in medical image analysis is crucial for diagnosis and treatment planning.
In this paper, we utilize the knowledge of Deformable Convolution V3 to optimize our Spatially Adaptive Convolution Network (SACNet)
Experiments on 3D slice datasets from ACDC and Synapse demonstrate that SACNet delivers superior segmentation performance compared to several existing methods.
- Score: 7.897088081928714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-organ segmentation in medical image analysis is crucial for diagnosis and treatment planning. However, many factors complicate the task, including variability in different target categories and interference from complex backgrounds. In this paper, we utilize the knowledge of Deformable Convolution V3 (DCNv3) and multi-object segmentation to optimize our Spatially Adaptive Convolution Network (SACNet) in three aspects: feature extraction, model architecture, and loss constraint, simultaneously enhancing the perception of different segmentation targets. Firstly, we propose the Adaptive Receptive Field Module (ARFM), which combines DCNv3 with a series of customized block-level and architecture-level designs similar to transformers. This module can capture the unique features of different organs by adaptively adjusting the receptive field according to various targets. Secondly, we utilize ARFM as building blocks to construct the encoder-decoder of SACNet and partially share parameters between the encoder and decoder, making the network wider rather than deeper. This design achieves a shared lightweight decoder and a more parameter-efficient and effective framework. Lastly, we propose a novel continuity dynamic adjustment loss function, based on t-vMF dice loss and cross-entropy loss, to better balance easy and complex classes in segmentation. Experiments on 3D slice datasets from ACDC and Synapse demonstrate that SACNet delivers superior segmentation performance in multi-organ segmentation tasks compared to several existing methods.
Related papers
- Optimizing Medical Image Segmentation with Advanced Decoder Design [0.8402155549849591]
U-Net is widely used in medical image segmentation due to its simple and flexible architecture design.
We propose Swin DER (i.e., Swin UNETR Decoder Enhanced and Refined) by specifically optimizing the design of these three components.
Our model design achieves excellent results, surpassing other state-of-the-art methods on both the Synapse and the MSD brain tumor segmentation task.
arXiv Detail & Related papers (2024-10-05T11:47:13Z) - ASSNet: Adaptive Semantic Segmentation Network for Microtumors and Multi-Organ Segmentation [32.74195208408193]
Medical image segmentation is a crucial task in computer vision, supporting clinicians in diagnosis, treatment planning, and disease monitoring.
We propose the Adaptive Semantic Network (ASSNet), a transformer architecture that effectively integrates local and global features for precise medical image segmentation.
Tests on diverse medical image segmentation tasks, including multi-organ, liver tumor, and bladder tumor segmentation, demonstrate that ASSNet achieves state-of-the-art results.
arXiv Detail & Related papers (2024-09-12T06:25:44Z) - MSA$^2$Net: Multi-scale Adaptive Attention-guided Network for Medical Image Segmentation [8.404273502720136]
We introduce MSA$2$Net, a new deep segmentation framework featuring an expedient design of skip-connections.
We propose a Multi-Scale Adaptive Spatial Attention Gate (MASAG) to ensure that spatially relevant features are selectively highlighted.
Our MSA$2$Net outperforms state-of-the-art (SOTA) works or matches their performance.
arXiv Detail & Related papers (2024-07-31T14:41:10Z) - Towards Diverse Binary Segmentation via A Simple yet General Gated Network [71.19503376629083]
We propose a simple yet general gated network (GateNet) to tackle binary segmentation tasks.
With the help of multi-level gate units, the valuable context information from the encoder can be selectively transmitted to the decoder.
We introduce a "Fold" operation to improve the atrous convolution and form a novel folded atrous convolution.
arXiv Detail & Related papers (2023-03-18T11:26:36Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
We propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple datasets.
A dynamic head enables the network to accomplish multiple segmentation tasks flexibly.
We create a large-scale partially labeled Multi-Organ and Tumor benchmark, termed MOTS, and demonstrate the superior performance of our TransDoDNet over other competitors.
arXiv Detail & Related papers (2022-11-13T13:03:09Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection [59.21990697929617]
Humans tend to mine objects by learning from a group of images or several frames of video since we live in a dynamic world.
Previous approaches design different networks on similar tasks separately, and they are difficult to apply to each other.
We introduce a unified framework to tackle these issues, term as UFO (UnifiedObject Framework for Co-Object Framework)
arXiv Detail & Related papers (2022-03-09T13:35:19Z) - Conquering Data Variations in Resolution: A Slice-Aware Multi-Branch
Decoder Network [28.946037652152395]
We identify the wide variation in the ratio between intra- and inter-slice resolutions as a crucial obstacle to the performance.
We propose a slice-aware 2.5D network that emphasizes extracting discnative features utilizing not only in-plane semantics but also out-of-plane for each separate slice.
arXiv Detail & Related papers (2022-03-07T14:31:26Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
We present a novel boundary-aware loss term for semantic segmentation using an inverse-transformation network.
This plug-in loss term complements the cross-entropy loss in capturing boundary transformations.
We analyze the quantitative and qualitative effects of our loss function on three indoor and outdoor segmentation benchmarks.
arXiv Detail & Related papers (2021-04-06T18:52:45Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.