The Error Analysis of the Secret Key Generation Algorithm Using Analog Function Computation
- URL: http://arxiv.org/abs/2407.10276v1
- Date: Sun, 14 Jul 2024 17:20:54 GMT
- Title: The Error Analysis of the Secret Key Generation Algorithm Using Analog Function Computation
- Authors: Ertugrul Alper, Eray Guven, Gunes Karabulut Kurt, Enver Ozdemir,
- Abstract summary: This study introduces a decentralized approach to secure wireless communication using a cryptographic secret key generation algorithm among distributed nodes.
The robustness of the proposed model under fading channel conditions is evaluated with a success rate.
- Score: 1.3649494534428748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a decentralized approach to secure wireless communication using a cryptographic secret key generation algorithm among distributed nodes. The system model employs Gaussian prime numbers, ensuring the collaborative generation of a secret key. Pre-processing and post-processing functions enable to generate a secret key across the network. An error model evaluates aspects like thermal noise power and channel estimation errors, while simulations assess the success rate to factorize the norm of the secret key. It is observed that path loss-induced large scale fading emerges as a critical component impacting information and power loss. The robustness of the proposed model under fading channel conditions is evaluated with a success rate. Additionally, it is also observed that the tolerance value set in the factorization algorithms has a significant impact on the success rate. Furthermore, the success rate is compared in two scenarios, one with 2 users and another with 3 users, to provide a comprehensive evaluation of the system performance.
Related papers
- Trusted source noise model of discrete-modulated continuous-variable quantum key distribution [8.019408649120262]
discrete-modulated continuous-variable quantum key distribution.
Traditional approach is to assume that eavesdroppers can control all of the source noise.
We tailor a trusted model specifically for the discrete-modulated protocol and upgrade the security analysis accordingly.
arXiv Detail & Related papers (2024-07-29T10:35:33Z) - Efficient Algorithm Level Error Detection for Number-Theoretic Transform Assessed on FPGAs [2.156170153103442]
This paper introduces algorithm level fault detection schemes in NTT multiplication.
We evaluate this through the simulation of a fault model, ensuring that the conducted assessments accurately mirror the obtained results.
We achieve a comparable throughput with just a 9% increase in area and 13% increase in latency compared to the original hardware implementations.
arXiv Detail & Related papers (2024-03-02T14:05:56Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Efficient Global Robustness Certification of Neural Networks via
Interleaving Twin-Network Encoding [8.173681464694651]
We formulate the global robustness certification for neural networks with ReLU activation functions as a mixed-integer linear programming (MILP) problem.
Our approach includes a novel interleaving twin-network encoding scheme, where two copies of the neural network are encoded side-by-side.
A case study of closed-loop control safety verification is conducted, and demonstrates the importance and practicality of our approach.
arXiv Detail & Related papers (2022-03-26T19:23:37Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.