RecGS: Removing Water Caustic with Recurrent Gaussian Splatting
- URL: http://arxiv.org/abs/2407.10318v2
- Date: Tue, 16 Jul 2024 22:20:11 GMT
- Title: RecGS: Removing Water Caustic with Recurrent Gaussian Splatting
- Authors: Tianyi Zhang, Weiming Zhi, Kaining Huang, Joshua Mangelson, Corina Barbalata, Matthew Johnson-Roberson,
- Abstract summary: Water caustics are commonly observed in seafloor imaging data from shallow-water areas.
Traditional methods that remove caustic patterns from images often rely on 2D filtering or pre-training on an annotated dataset.
We present a novel method Recurrent Gaussian Splatting (RecGS), which takes advantage of today's photorealistic 3D reconstruction technology.
- Score: 13.87415686123919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Water caustics are commonly observed in seafloor imaging data from shallow-water areas. Traditional methods that remove caustic patterns from images often rely on 2D filtering or pre-training on an annotated dataset, hindering the performance when generalizing to real-world seafloor data with 3D structures. In this paper, we present a novel method Recurrent Gaussian Splatting (RecGS), which takes advantage of today's photorealistic 3D reconstruction technology, 3DGS, to separate caustics from seafloor imagery. With a sequence of images taken by an underwater robot, we build 3DGS recurrently and decompose the caustic with low-pass filtering in each iteration. In the experiments, we analyze and compare with different methods, including joint optimization, 2D filtering, and deep learning approaches. The results show that our method can effectively separate the caustic from the seafloor, improving the visual appearance, and can be potentially applied on more problems with inconsistent illumination.
Related papers
- UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - Object Modeling from Underwater Forward-Scan Sonar Imagery with Sea-Surface Multipath [16.057203527513632]
A key contribution, for objects imaged in the proximity of the sea surface, is to resolve the multipath artifacts due to the air-water interface.
Here, the object image formed by the direct target backscatter is almost always corrupted by the ghost and sometimes by the mirror components.
We model, localize, and discard the corrupted object region within each view, thus avoiding the distortion of recovered 3-D shape.
arXiv Detail & Related papers (2024-09-10T18:46:25Z) - Z-Splat: Z-Axis Gaussian Splatting for Camera-Sonar Fusion [20.464224937528222]
Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes.
GS suffers from a well-known'missing cone' problem, which results in poor reconstruction along the depth axis.
We propose fusion algorithms that simultaneously utilize RGB camera data and sonar data.
arXiv Detail & Related papers (2024-04-06T17:23:43Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Mip-Splatting: Alias-free 3D Gaussian Splatting [52.366815964832426]
3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency.
Strong artifacts can be observed when changing the sampling rate, eg, by changing focal length or camera distance.
We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter.
arXiv Detail & Related papers (2023-11-27T13:03:09Z) - 3D shape reconstruction of semi-transparent worms [0.950214811819847]
3D shape reconstruction typically requires identifying object features or textures in multiple images of a subject.
Here we overcome these challenges by rendering a candidate shape with adaptive blurring and transparency for comparison with the images.
We model the slender Caenorhabditis elegans as a 3D curve using an intrinsic parametrisation that naturally admits biologically-informed constraints and regularisation.
arXiv Detail & Related papers (2023-04-28T13:29:36Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - Seafloor-Invariant Caustics Removal from Underwater Imagery [0.0]
Caustics are complex physical phenomena resulting from the projection of light rays being refracted by the wavy surface.
In this work, we propose a novel method for correcting the effects of caustics on shallow underwater imagery.
In particular, the developed method employs deep learning architectures in order to classify image pixels to "non-caustics" and "caustics"
arXiv Detail & Related papers (2022-12-20T11:11:02Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Learning to Recover 3D Scene Shape from a Single Image [98.20106822614392]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape.
arXiv Detail & Related papers (2020-12-17T02:35:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.