Towards Adapting Reinforcement Learning Agents to New Tasks: Insights from Q-Values
- URL: http://arxiv.org/abs/2407.10335v1
- Date: Sun, 14 Jul 2024 21:28:27 GMT
- Title: Towards Adapting Reinforcement Learning Agents to New Tasks: Insights from Q-Values
- Authors: Ashwin Ramaswamy, Ransalu Senanayake,
- Abstract summary: Policy gradient methods can still be useful in many domains as long as we can wrangle with how to exploit them in a sample efficient way.
We explore the chaotic nature of DQNs in reinforcement learning, while understanding how the information that they retain when trained can be repurposed for adapting a model to different tasks.
- Score: 8.694989771294013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While contemporary reinforcement learning research and applications have embraced policy gradient methods as the panacea of solving learning problems, value-based methods can still be useful in many domains as long as we can wrangle with how to exploit them in a sample efficient way. In this paper, we explore the chaotic nature of DQNs in reinforcement learning, while understanding how the information that they retain when trained can be repurposed for adapting a model to different tasks. We start by designing a simple experiment in which we are able to observe the Q-values for each state and action in an environment. Then we train in eight different ways to explore how these training algorithms affect the way that accurate Q-values are learned (or not learned). We tested the adaptability of each trained model when retrained to accomplish a slightly modified task. We then scaled our setup to test the larger problem of an autonomous vehicle at an unprotected intersection. We observed that the model is able to adapt to new tasks quicker when the base model's Q-value estimates are closer to the true Q-values. The results provide some insights and guidelines into what algorithms are useful for sample efficient task adaptation.
Related papers
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Learning How to Infer Partial MDPs for In-Context Adaptation and
Exploration [17.27164535440641]
Posterior sampling is a promising approach, but it requires Bayesian inference and dynamic programming.
We show that even though partial models exclude relevant information from the environment, they can nevertheless lead to good policies.
arXiv Detail & Related papers (2023-02-08T18:35:24Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - Optimizing the Long-Term Behaviour of Deep Reinforcement Learning for
Pushing and Grasping [0.0]
We investigate the capabilities of two systems to learn long-term rewards and policies.
Ewerton et al. attain their best performance using an agent which only takes the most immediate action under consideration.
We show that this approach enables the models to accurately predict long-term action sequences when trained with large discount factors.
arXiv Detail & Related papers (2022-04-07T15:02:44Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
Deep learning models suffer from catastrophic forgetting when trained in an incremental learning setting.
We propose a novel approach to address the task incremental learning problem, which involves training a model on new tasks that arrive in an incremental manner.
Our approach can be used in both the zero-shot and non zero-shot task incremental learning settings.
arXiv Detail & Related papers (2021-03-30T18:11:30Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Few Is Enough: Task-Augmented Active Meta-Learning for Brain Cell
Classification [8.998976678920236]
We propose a tAsk-auGmented actIve meta-LEarning (AGILE) method to efficiently adapt Deep Neural Networks to new tasks.
AGILE combines a meta-learning algorithm with a novel task augmentation technique which we use to generate an initial adaptive model.
We show that the proposed task-augmented meta-learning framework can learn to classify new cell types after a single gradient step.
arXiv Detail & Related papers (2020-07-09T18:03:12Z) - Sequential Transfer in Reinforcement Learning with a Generative Model [48.40219742217783]
We show how to reduce the sample complexity for learning new tasks by transferring knowledge from previously-solved ones.
We derive PAC bounds on its sample complexity which clearly demonstrate the benefits of using this kind of prior knowledge.
We empirically verify our theoretical findings in simple simulated domains.
arXiv Detail & Related papers (2020-07-01T19:53:35Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
We present a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time.
Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data.
arXiv Detail & Related papers (2020-06-12T13:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.