A Multi-Stage Framework for 3D Individual Tooth Segmentation in Dental CBCT
- URL: http://arxiv.org/abs/2407.10433v1
- Date: Mon, 15 Jul 2024 04:23:28 GMT
- Title: A Multi-Stage Framework for 3D Individual Tooth Segmentation in Dental CBCT
- Authors: Chunshi Wang, Bin Zhao, Shuxue Ding,
- Abstract summary: Cone beam computed tomography (CBCT) is a common way of diagnosing dental diseases.
Deep learning based methods have achieved convincing results in medical image processing.
We propose a multi-stage framework for 3D tooth related generalization in dental CBCT.
- Score: 7.6057981800052845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cone beam computed tomography (CBCT) is a common way of diagnosing dental related diseases. Accurate segmentation of 3D tooth is of importance for the treatment. Although deep learning based methods have achieved convincing results in medical image processing, they need a large of annotated data for network training, making it very time-consuming in data collection and annotation. Besides, domain shift widely existing in the distribution of data acquired by different devices impacts severely the model generalization. To resolve the problem, we propose a multi-stage framework for 3D tooth segmentation in dental CBCT, which achieves the third place in the "Semi-supervised Teeth Segmentation" 3D (STS-3D) challenge. The experiments on validation set compared with other semi-supervised segmentation methods further indicate the validity of our approach.
Related papers
- Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - TSegFormer: 3D Tooth Segmentation in Intraoral Scans with Geometry
Guided Transformer [47.18526074157094]
Optical Intraoral Scanners (IOSs) are widely used in digital dentistry to provide detailed 3D information of dental crowns and the gingiva.
Previous methods are error-prone at complicated boundaries and exhibit unsatisfactory results across patients.
We propose TSegFormer which captures both local and global dependencies among different teeth and the gingiva in the IOS point clouds with a multi-task 3D transformer architecture.
arXiv Detail & Related papers (2023-11-22T08:45:01Z) - Processing and Segmentation of Human Teeth from 2D Images using Weakly
Supervised Learning [1.6385815610837167]
We propose a weakly supervised approach for teeth segmentation that reduces the need for manual annotation.
Our method utilizes the output heatmaps and intermediate feature maps from a keypoint detection network to guide the segmentation process.
Our method offers a cost-effective and efficient solution for teeth segmentation in real-world dental applications.
arXiv Detail & Related papers (2023-11-13T15:25:55Z) - 3D-U-SAM Network For Few-shot Tooth Segmentation in CBCT Images [22.86724024199165]
We propose a novel 3D-U-SAM network for 3D dental image segmentation.
In order to solve the problem of using 2D pre-trained weights on 3D datasets, we adopted a convolution approximation method.
The effectiveness of the proposed method is demonstrated in ablation experiments, comparison experiments, and sample size experiments.
arXiv Detail & Related papers (2023-09-20T02:32:09Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - TFormer: 3D Tooth Segmentation in Mesh Scans with Geometry Guided
Transformer [37.47317212620463]
Optical Intra-oral Scanners (IOS) are widely used in digital dentistry, providing 3-Dimensional (3D) and high-resolution geometrical information of dental crowns and the gingiva.
Previous methods are error-prone in complicated tooth-tooth or tooth-gingiva boundaries, and usually exhibit unsatisfactory results across various patients.
We propose a novel method based on 3D transformer architectures that is evaluated with large-scale and high-resolution 3D IOS datasets.
arXiv Detail & Related papers (2022-10-29T15:20:54Z) - CTooth: A Fully Annotated 3D Dataset and Benchmark for Tooth Volume
Segmentation on Cone Beam Computed Tomography Images [19.79983193894742]
3D tooth segmentation is a prerequisite for computer-aided dental diagnosis and treatment.
Deep learning-based segmentation methods produce convincing results, but it requires a large quantity of ground truth for training.
In this paper, we establish a fully annotated cone beam computed tomography dataset CTooth with tooth gold standard.
arXiv Detail & Related papers (2022-06-17T13:48:35Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - A fully automated method for 3D individual tooth identification and
segmentation in dental CBCT [1.567576360103422]
This paper proposes a fully automated method of identifying and segmenting 3D individual teeth from dental CBCT images.
The proposed method addresses the aforementioned difficulty by developing a deep learning-based hierarchical multi-step model.
Experimental results showed that the proposed method achieved an F1-score of 93.35% for tooth identification and a Dice similarity coefficient of 94.79% for individual 3D tooth segmentation.
arXiv Detail & Related papers (2021-02-11T15:07:23Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.