IDEAL: Leveraging Infinite and Dynamic Characterizations of Large Language Models for Query-focused Summarization
- URL: http://arxiv.org/abs/2407.10486v1
- Date: Mon, 15 Jul 2024 07:14:56 GMT
- Title: IDEAL: Leveraging Infinite and Dynamic Characterizations of Large Language Models for Query-focused Summarization
- Authors: Jie Cao, Dian Jiao, Qiang Yan, Wenqiao Zhang, Siliang Tang, Yueting Zhuang,
- Abstract summary: Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization.
We investigate two indispensable characteristics that the LLMs-based QFS models should be harnessed, Lengthy Document Summarization and Efficiently Fine-grained Query-LLM Alignment.
These innovations pave the way for broader application and accessibility in the field of QFS technology.
- Score: 59.06663981902496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization. With the advent of large language models (LLMs), shows their impressive capability of textual understanding through large-scale pretraining, which implies the great potential of extractive snippet generation. In this paper, we systematically investigated two indispensable characteristics that the LLMs-based QFS models should be harnessed, Lengthy Document Summarization and Efficiently Fine-grained Query-LLM Alignment, respectively. Correspondingly, we propose two modules called Query-aware HyperExpert and Query-focused Infini-attention to access the aforementioned characteristics. These innovations pave the way for broader application and accessibility in the field of QFS technology. Extensive experiments conducted on existing QFS benchmarks indicate the effectiveness and generalizability of the proposed approach. Our code is publicly available at https://github.com/DCDmllm/IDEAL_Summary.
Related papers
- Beyond Relevant Documents: A Knowledge-Intensive Approach for Query-Focused Summarization using Large Language Models [27.90653125902507]
We propose a knowledge-intensive approach that reframes query-focused summarization as a knowledge-intensive task setup.
The retrieval module efficiently retrieves potentially relevant documents from a large-scale knowledge corpus.
The summarization controller seamlessly integrates a powerful large language model (LLM)-based summarizer with a carefully tailored prompt.
arXiv Detail & Related papers (2024-08-19T18:54:20Z) - Harnessing Multi-Role Capabilities of Large Language Models for
Open-Domain Question Answering [40.2758450304531]
Open-domain question answering (ODQA) has emerged as a pivotal research spotlight in information systems.
We propose a framework that formulates the ODQA process into three basic steps: query expansion, document selection, and answer generation.
We introduce a novel prompt optimization algorithm to refine role-playing prompts and steer LLMs to produce higher-quality evidence and answers.
arXiv Detail & Related papers (2024-03-08T11:09:13Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - SEMQA: Semi-Extractive Multi-Source Question Answering [94.04430035121136]
We introduce a new QA task for answering multi-answer questions by summarizing multiple diverse sources in a semi-extractive fashion.
We create the first dataset of this kind, QuoteSum, with human-written semi-extractive answers to natural and generated questions.
arXiv Detail & Related papers (2023-11-08T18:46:32Z) - FlexKBQA: A Flexible LLM-Powered Framework for Few-Shot Knowledge Base
Question Answering [16.88132219032486]
We introduce FlexKBQA to mitigate the burden associated with manual annotation.
We leverage Large Language Models (LLMs) as program translators for addressing the challenges inherent in the few-shot KBQA task.
Specifically, FlexKBQA leverages automated algorithms to sample diverse programs, such as SPARQL queries, from the knowledge base.
We observe that under the few-shot even the more challenging zero-shot scenarios, FlexKBQA achieves impressive results with a few annotations.
arXiv Detail & Related papers (2023-08-23T11:00:36Z) - LMGQS: A Large-scale Dataset for Query-focused Summarization [77.6179359525065]
We convert four generic summarization benchmarks into a new QFS benchmark dataset, LMGQS.
We establish baselines with state-of-the-art summarization models.
We achieve state-of-the-art zero-shot and supervised performance on multiple existing QFS benchmarks.
arXiv Detail & Related papers (2023-05-22T14:53:45Z) - A Lightweight Constrained Generation Alternative for Query-focused
Summarization [8.264410236351111]
Query-focused summarization (QFS) aims to provide a summary of a document that satisfies information need of a given query.
We propose leveraging a recently developed constrained generation model Neurological Decoding (NLD) as an alternative to current QFS regimes.
We demonstrate the efficacy of this approach on two public QFS collections achieving near parity with the state-of-the-art model with substantially reduced complexity.
arXiv Detail & Related papers (2023-04-23T18:43:48Z) - Exploring Neural Models for Query-Focused Summarization [74.41256438059256]
We conduct a systematic exploration of neural approaches to query-focused summarization (QFS)
We present two model extensions that achieve state-of-the-art performance on the QMSum dataset by a margin of up to 3.38 ROUGE-1, 3.72 ROUGE-2, and 3.28 ROUGE-L.
arXiv Detail & Related papers (2021-12-14T18:33:29Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.