A pragmatic policy learning approach to account for users' fatigue in repeated auctions
- URL: http://arxiv.org/abs/2407.10504v1
- Date: Mon, 15 Jul 2024 07:53:29 GMT
- Title: A pragmatic policy learning approach to account for users' fatigue in repeated auctions
- Authors: Benjamin Heymann, RĂ©mi Chan--Renous-Legoubin, Alexandre Gilotte,
- Abstract summary: ML models can predict how previously won auctions the current opportunity value.
A policy that uses this prediction tomaximize the expected payoff of the current auction could be dubbedimpatient.
We provide two empirical arguments for the importance of this cost ofimpatience.
- Score: 47.75983850930121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online advertising banners are sold in real-time through auctions.Typically, the more banners a user is shown, the smaller the marginalvalue of the next banner for this user is. This fact can be detected bybasic ML models, that can be used to predict how previously won auctionsdecrease the current opportunity value. However, learning is not enough toproduce a bid that correctly accounts for how winning the current auctionimpacts the future values. Indeed, a policy that uses this prediction tomaximize the expected payoff of the current auction could be dubbedimpatient because such policy does not fully account for the repeatednature of the auctions. Under this perspective, it seems that most biddersin the literature are impatient. Unsurprisingly, impatience induces a cost.We provide two empirical arguments for the importance of this cost ofimpatience. First, an offline counterfactual analysis and, second, a notablebusiness metrics improvement by mitigating the cost of impatience withpolicy learning
Related papers
- Improved Online Learning Algorithms for CTR Prediction in Ad Auctions [8.2536631346421]
We investigate the online learning problem of revenue in ad auctions.
We focus on two models of the advertisers' strategic behaviors.
We develop an online mechanism based on upper-confidence bounds that achieves a tight $O(sqrtT)$ regret.
arXiv Detail & Related papers (2024-02-29T14:10:26Z) - Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions [42.002983450368134]
We study the question of how to bid in first-price auctions.
Unlike in second-price auctions, bidding one's private value truthfully is no longer optimal.
We consider two types of hints: one where a single point-prediction is available, and the other where a hint interval is available.
arXiv Detail & Related papers (2022-11-05T19:20:53Z) - A Reinforcement Learning Approach in Multi-Phase Second-Price Auction
Design [158.0041488194202]
We study reserve price optimization in multi-phase second price auctions.
From the seller's perspective, we need to efficiently explore the environment in the presence of potentially nontruthful bidders.
Third, the seller's per-step revenue is unknown, nonlinear, and cannot even be directly observed from the environment.
arXiv Detail & Related papers (2022-10-19T03:49:05Z) - Fast Rate Learning in Stochastic First Price Bidding [0.0]
First-price auctions have largely replaced traditional bidding approaches based on Vickrey auctions in programmatic advertising.
We show how to achieve significantly lower regret when the opponents' maximal bid distribution is known.
Our algorithms converge much faster than alternatives proposed in the literature for various bid distributions.
arXiv Detail & Related papers (2021-07-05T07:48:52Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
Real-Time Bidding is a new Internet advertising system that has become very popular in recent years.
We propose an alternative betting system with a new approach that not only considers the economic aspect but also other relevant factors for the functioning of the advertising system.
arXiv Detail & Related papers (2020-10-22T18:36:41Z) - ProportionNet: Balancing Fairness and Revenue for Auction Design with
Deep Learning [55.76903822619047]
We study the design of revenue-maximizing auctions with strong incentive guarantees.
We extend techniques for approximating auctions using deep learning to address concerns of fairness while maintaining high revenue and strong incentive guarantees.
arXiv Detail & Related papers (2020-10-13T13:54:21Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
We propose our Deep Intents Sequential Advertising (DISA) method to address these issues.
The key part of interpretability is to understand a consumer's purchase intent which is, however, unobservable (called hidden states)
arXiv Detail & Related papers (2020-09-03T05:12:26Z) - Optimal No-regret Learning in Repeated First-price Auctions [38.908235632001116]
We study online learning in repeated first-price auctions.
We develop the first learning algorithm that achieves a near-optimal $widetildeO(sqrtT)$ regret bound.
arXiv Detail & Related papers (2020-03-22T03:32:09Z) - Dynamic Incentive-aware Learning: Robust Pricing in Contextual Auctions [13.234975857626752]
We consider the problem of robust learning of reserve prices against strategic buyers in contextual second-price auctions.
We propose learning policies that are robust to such strategic behavior.
arXiv Detail & Related papers (2020-02-25T19:00:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.