MARVEL: MR Fingerprinting with Additional micRoVascular Estimates using bidirectional LSTMs
- URL: http://arxiv.org/abs/2407.10512v1
- Date: Mon, 15 Jul 2024 08:09:54 GMT
- Title: MARVEL: MR Fingerprinting with Additional micRoVascular Estimates using bidirectional LSTMs
- Authors: Antoine Barrier, Thomas Coudert, Aurélien Delphin, Benjamin Lemasson, Thomas Christen,
- Abstract summary: We propose an efficient way to simulate the MR signal coming from numerical voxels containing realistic microvascular networks.
Our results on 3 human volunteers suggest that our approach can quickly produce high-quality quantitative maps of microvascular parameters.
- Score: 0.8901227918730564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Magnetic Resonance Fingerprinting (MRF) approach aims to estimate multiple MR or physiological parameters simultaneously with a single fast acquisition sequence. Most of the MRF studies proposed so far have used simple MR sequence types to measure relaxation times (T1, T2). In that case, deep learning algorithms have been successfully used to speed up the reconstruction process. In theory, the MRF concept could be used with a variety of other MR sequence types and should be able to provide more information about the tissue microstructures. Yet, increasing the complexity of the numerical models often leads to prohibited simulation times, and estimating multiple parameters from one sequence implies new dictionary dimensions whose sizes become too large for standard computers and DL architectures.In this paper, we propose to analyze the MRF signal coming from a complex balance Steady-state free precession (bSSFP) type sequence to simultaneously estimate relaxometry maps (T1, T2), Field maps (B1, B0) as well as microvascular properties such as the local Cerebral Blood Volume (CBV) or the averaged vessel Radius (R).To bypass the curse of dimensionality, we propose an efficient way to simulate the MR signal coming from numerical voxels containing realistic microvascular networks as well as a Bidirectional Long Short-Term Memory network used for the matching process.On top of standard MRF maps, our results on 3 human volunteers suggest that our approach can quickly produce high-quality quantitative maps of microvascular parameters that are otherwise obtained using longer dedicated sequences and intravenous injection of a contrast agent. This approach could be used for the management of multiple pathologies and could be tuned to provide other types of microstructural information.
Related papers
- NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - A Unified Learning Model for Estimating Fiber Orientation Distribution
Functions on Heterogeneous Multi-shell Diffusion-weighted MRI [7.619657591752497]
Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space.
Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal.
We present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function estimation.
arXiv Detail & Related papers (2023-03-29T00:58:18Z) - Magnetic Resonance Fingerprinting with compressed sensing and distance
metric learning [38.88009278259666]
Magnetic Resonance Fingerprinting (MRF) is a novel technique that simultaneously estimates multiple tissue-related parameters.
MRF method suffers from aliasing artifacts because it significantly undersamples the k-space data.
We propose a compressed sensing (CS) framework for simultaneously estimating multiple tissue-related parameters.
arXiv Detail & Related papers (2022-09-19T03:08:26Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
This work proposes a generative adversarial network tailored towards three-dimensional microstructure generation.
The lightweight algorithm is able to learn the underlying properties of the material from a single microCT-scan without the need of explicit descriptors.
arXiv Detail & Related papers (2022-05-31T13:26:51Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Real-Time Mapping of Tissue Properties for Magnetic Resonance
Fingerprinting [20.834829860562248]
We introduce a novel end-to-end deep learning framework to seamlessly map the tissue properties directly from spiral k-space MRF data.
Our method directly consumes the non-Cartesian k- space data, performs adaptive density compensation, and predicts multiple tissue property maps in one forward pass.
arXiv Detail & Related papers (2021-07-16T21:05:47Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification.
PINNs can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws.
arXiv Detail & Related papers (2020-11-25T16:02:52Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Joint Total Variation ESTATICS for Robust Multi-Parameter Mapping [0.0]
ESTATICS performs a joint loglinear fit of multiple echo series to extract R2* and multiple extrapolated intercepts.
We evaluate the proposed algorithm by predicting left-out echoes in a rich single-subject dataset.
arXiv Detail & Related papers (2020-05-28T19:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.