3D Geometric Shape Assembly via Efficient Point Cloud Matching
- URL: http://arxiv.org/abs/2407.10542v1
- Date: Mon, 15 Jul 2024 08:50:02 GMT
- Title: 3D Geometric Shape Assembly via Efficient Point Cloud Matching
- Authors: Nahyuk Lee, Juhong Min, Junha Lee, Seungwook Kim, Kanghee Lee, Jaesik Park, Minsu Cho,
- Abstract summary: We introduce Proxy Match Transform (PMT), an approximate high-order feature transform layer that enables reliable matching between mating surfaces of parts.
Building upon PMT, we introduce a new framework, dubbed Proxy Match TransformeR (PMTR), for the geometric assembly task.
We evaluate the proposed PMTR on the large-scale 3D geometric shape assembly benchmark dataset of Breaking Bad.
- Score: 59.241448711254485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to assemble geometric shapes into a larger target structure is a pivotal task in various practical applications. In this work, we tackle this problem by establishing local correspondences between point clouds of part shapes in both coarse- and fine-levels. To this end, we introduce Proxy Match Transform (PMT), an approximate high-order feature transform layer that enables reliable matching between mating surfaces of parts while incurring low costs in memory and computation. Building upon PMT, we introduce a new framework, dubbed Proxy Match TransformeR (PMTR), for the geometric assembly task. We evaluate the proposed PMTR on the large-scale 3D geometric shape assembly benchmark dataset of Breaking Bad and demonstrate its superior performance and efficiency compared to state-of-the-art methods. Project page: https://nahyuklee.github.io/pmtr.
Related papers
- A Recipe for Geometry-Aware 3D Mesh Transformers [2.0992612407358293]
We study an approach for embedding features at the patch level, accommodating patches with variable node counts.
Our research highlights critical insights: 1) the importance of structural and positional embeddings facilitated by heat diffusion in general 3D mesh transformers; 2) the effectiveness of novel components such as geodesic masking and feature interaction via cross-attention in enhancing learning; and 3) the superior performance and efficiency of our proposed methods in challenging segmentation and classification tasks.
arXiv Detail & Related papers (2024-10-31T19:13:31Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Locally Adaptive Neural 3D Morphable Models [38.38400553022714]
We present the Locally Adaptive Morphable Model (LAMM), a framework for learning to generate and manipulate 3D meshes.
A very efficient computational graph allows our network to train with only a fraction of the memory required by previous methods.
We further leverage local geometry control as a primitive for higher level editing operations and present a set of derivative capabilities.
arXiv Detail & Related papers (2024-01-05T18:28:51Z) - ConDaFormer: Disassembled Transformer with Local Structure Enhancement
for 3D Point Cloud Understanding [105.98609765389895]
Transformers have been recently explored for 3D point cloud understanding.
A large number of points, over 0.1 million, make the global self-attention infeasible for point cloud data.
In this paper, we develop a new transformer block, named ConDaFormer.
arXiv Detail & Related papers (2023-12-18T11:19:45Z) - Structural Multiplane Image: Bridging Neural View Synthesis and 3D
Reconstruction [39.89856628467095]
We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely.
Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses.
Our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.
arXiv Detail & Related papers (2023-03-10T14:18:40Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
The intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism.
We propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies.
We present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task.
arXiv Detail & Related papers (2021-12-14T13:14:24Z) - SEG-MAT: 3D Shape Segmentation Using Medial Axis Transform [49.51977253452456]
We present an efficient method for 3D shape segmentation based on the medial axis transform (MAT) of the input shape.
Specifically, with the rich geometrical and structural information encoded in the MAT, we are able to identify the various types of junctions between different parts of a 3D shape.
Our method outperforms the state-of-the-art methods in terms of segmentation quality and is also one order of magnitude faster.
arXiv Detail & Related papers (2020-10-22T07:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.