TripletViNet: Mitigating Misinformation Video Spread Across Platforms
- URL: http://arxiv.org/abs/2407.10644v1
- Date: Mon, 15 Jul 2024 12:03:23 GMT
- Title: TripletViNet: Mitigating Misinformation Video Spread Across Platforms
- Authors: Petar Smolovic, Thilini Dahanayaka, Kanchana Thilakarathna,
- Abstract summary: There has been rampant propagation of fake news and misinformation videos on many platforms lately.
Recent research has shown the feasibility of identifying video titles from encrypted network traffic within a single platform.
There are no existing methods for cross-platform video recognition.
- Score: 3.1492627280939547
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: There has been rampant propagation of fake news and misinformation videos on many platforms lately, and moderation of such content faces many challenges that must be overcome. Recent research has shown the feasibility of identifying video titles from encrypted network traffic within a single platform, for example, within YouTube or Facebook. However, there are no existing methods for cross-platform video recognition, a crucial gap that this works aims to address. Encrypted video traffic classification within a single platform, that is, classifying the video title of a traffic trace of a video on one platform by training on traffic traces of videos on the same platform, has significant limitations due to the large number of video platforms available to users to upload harmful content to. To attempt to address this limitation, we conduct a feasibility analysis into and attempt to solve the challenge of recognizing videos across multiple platforms by using the traffic traces of videos on one platform only. We propose TripletViNet, a framework that encompasses i) platform-wise pre-processing, ii) an encoder trained utilizing triplet learning for improved accuracy and iii) multiclass classifier for classifying the video title of a traffic trace. To evaluate the performance of TripletViNet, a comprehensive dataset with traffic traces for 100 videos on six major platforms with the potential for spreading misinformation such as YouTube, X, Instagram, Facebook, Rumble, and Tumblr was collected and used to test TripletViNet in both closed-set and open-set scenarios. TripletViNet achieves significant improvements in accuracy due to the correlation between video traffic and the video's VBR, with impressive final accuracies exceeding 90% in certain scenarios.
Related papers
- Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets [62.280729345770936]
We introduce the task of Alignable Video Retrieval (AVR)
Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query.
Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-02T20:00:49Z) - Unveiling the Potential: Harnessing Deep Metric Learning to Circumvent Video Streaming Encryption [4.522744286037825]
We propose a deep metric learning framework based on the triplet loss method for encrypted video stream detection.
We show that our method scales well to a dataset of over 1000 videos.
Our results suggest that this side-channel attack is more broadly applicable than originally thought.
arXiv Detail & Related papers (2024-05-16T08:49:05Z) - InternVideo: General Video Foundation Models via Generative and
Discriminative Learning [52.69422763715118]
We present general video foundation models, InternVideo, for dynamic and complex video-level understanding tasks.
InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives.
InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications.
arXiv Detail & Related papers (2022-12-06T18:09:49Z) - Enabling Weakly-Supervised Temporal Action Localization from On-Device
Learning of the Video Stream [5.215681853828831]
We propose an efficient video learning approach to learn from a long, untrimmed streaming video.
To the best of our knowledge, we are the first attempt to directly learn from the on-device, long video stream.
arXiv Detail & Related papers (2022-08-25T13:41:03Z) - VPN: Video Provenance Network for Robust Content Attribution [72.12494245048504]
We present VPN - a content attribution method for recovering provenance information from videos shared online.
We learn a robust search embedding for matching such video, using full-length or truncated video queries.
Once matched against a trusted database of video clips, associated information on the provenance of the clip is presented to the user.
arXiv Detail & Related papers (2021-09-21T09:07:05Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels.
We evaluate various baseline methods with and without large-scale VidL pre-training.
The significant gap between our best model and human performance calls for future study for advanced VidL models.
arXiv Detail & Related papers (2021-06-08T18:34:21Z) - Few-Shot Video Object Detection [70.43402912344327]
We introduce Few-Shot Video Object Detection (FSVOD) with three important contributions.
FSVOD-500 comprises of 500 classes with class-balanced videos in each category for few-shot learning.
Our TPN and TMN+ are jointly and end-to-end trained.
arXiv Detail & Related papers (2021-04-30T07:38:04Z) - Efficient video integrity analysis through container characterization [77.45740041478743]
We introduce a container-based method to identify the software used to perform a video manipulation.
The proposed method is both efficient and effective and can also provide a simple explanation for its decisions.
It achieves an accuracy of 97.6% in distinguishing pristine from tampered videos and classifying the editing software.
arXiv Detail & Related papers (2021-01-26T14:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.