DataDream: Few-shot Guided Dataset Generation
- URL: http://arxiv.org/abs/2407.10910v2
- Date: Tue, 16 Jul 2024 13:15:01 GMT
- Title: DataDream: Few-shot Guided Dataset Generation
- Authors: Jae Myung Kim, Jessica Bader, Stephan Alaniz, Cordelia Schmid, Zeynep Akata,
- Abstract summary: We propose a framework for synthesizing classification datasets that more faithfully represents the real data distribution.
DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model.
We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets.
- Score: 90.09164461462365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While text-to-image diffusion models have been shown to achieve state-of-the-art results in image synthesis, they have yet to prove their effectiveness in downstream applications. Previous work has proposed to generate data for image classifier training given limited real data access. However, these methods struggle to generate in-distribution images or depict fine-grained features, thereby hindering the generalization of classification models trained on synthetic datasets. We propose DataDream, a framework for synthesizing classification datasets that more faithfully represents the real data distribution when guided by few-shot examples of the target classes. DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model. We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets. We demonstrate the efficacy of DataDream through extensive experiments, surpassing state-of-the-art classification accuracy with few-shot data across 7 out of 10 datasets, while being competitive on the other 3. Additionally, we provide insights into the impact of various factors, such as the number of real-shot and generated images as well as the fine-tuning compute on model performance. The code is available at https://github.com/ExplainableML/DataDream.
Related papers
- DreamDA: Generative Data Augmentation with Diffusion Models [68.22440150419003]
This paper proposes a new classification-oriented framework DreamDA.
DreamDA generates diverse samples that adhere to the original data distribution by considering training images in the original data as seeds.
In addition, since the labels of the generated data may not align with the labels of their corresponding seed images, we introduce a self-training paradigm for generating pseudo labels.
arXiv Detail & Related papers (2024-03-19T15:04:35Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Scaling Laws of Synthetic Images for Model Training ... for Now [54.43596959598466]
We study the scaling laws of synthetic images generated by state of the art text-to-image models.
We observe that synthetic images demonstrate a scaling trend similar to, but slightly less effective than, real images in CLIP training.
arXiv Detail & Related papers (2023-12-07T18:59:59Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
Training a model on purely synthetic images for downstream image processing tasks results in an undesired performance drop compared to training on real data.
We propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset.
Our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data.
arXiv Detail & Related papers (2023-11-07T12:57:58Z) - Feedback-guided Data Synthesis for Imbalanced Classification [10.836265321046561]
We introduce a framework for augmenting static datasets with useful synthetic samples.
We find that the samples must be close to the support of the real data of the task at hand, and be sufficiently diverse.
On ImageNet-LT, we achieve state-of-the-art results, with over 4 percent improvement on underrepresented classes.
arXiv Detail & Related papers (2023-09-29T21:47:57Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - T-ADAF: Adaptive Data Augmentation Framework for Image Classification
Network based on Tensor T-product Operator [0.0]
This paper proposes an Adaptive Data Augmentation Framework based on the tensor T-product Operator.
It triples one image data to be trained and gain the result from all these three images together with only less than 0.1% increase in the number of parameters.
Numerical experiments show that our data augmentation framework can improve the performance of original neural network model by 2%.
arXiv Detail & Related papers (2023-06-07T08:30:44Z) - Leaving Reality to Imagination: Robust Classification via Generated
Datasets [24.411444438920988]
Recent research on robustness has revealed significant performance gaps between neural image classifiers trained on datasets similar to the test set.
We study the question: How do generated datasets influence the natural robustness of image classifiers?
We find that Imagenet classifiers trained on real data augmented with generated data achieve higher accuracy and effective robustness than standard training.
arXiv Detail & Related papers (2023-02-05T22:49:33Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.