Representing Rule-based Chatbots with Transformers
- URL: http://arxiv.org/abs/2407.10949v1
- Date: Mon, 15 Jul 2024 17:45:53 GMT
- Title: Representing Rule-based Chatbots with Transformers
- Authors: Dan Friedman, Abhishek Panigrahi, Danqi Chen,
- Abstract summary: We build on prior work by constructing a Transformer that implements the ELIZA program.
ELIZA illustrates some of the distinctive challenges of the conversational setting.
We train Transformers on a dataset of synthetically generated ELIZA conversations and investigate the mechanisms the models learn.
- Score: 35.30128900987116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based chatbots can conduct fluent, natural-sounding conversations, but we have limited understanding of the mechanisms underlying their behavior. Prior work has taken a bottom-up approach to understanding Transformers by constructing Transformers for various synthetic and formal language tasks, such as regular expressions and Dyck languages. However, it is not obvious how to extend this approach to understand more naturalistic conversational agents. In this work, we take a step in this direction by constructing a Transformer that implements the ELIZA program, a classic, rule-based chatbot. ELIZA illustrates some of the distinctive challenges of the conversational setting, including both local pattern matching and long-term dialog state tracking. We build on constructions from prior work -- in particular, for simulating finite-state automata -- showing how simpler constructions can be composed and extended to give rise to more sophisticated behavior. Next, we train Transformers on a dataset of synthetically generated ELIZA conversations and investigate the mechanisms the models learn. Our analysis illustrates the kinds of mechanisms these models tend to prefer -- for example, models favor an induction head mechanism over a more precise, position based copying mechanism; and using intermediate generations to simulate recurrent data structures, like ELIZA's memory mechanisms. Overall, by drawing an explicit connection between neural chatbots and interpretable, symbolic mechanisms, our results offer a new setting for mechanistic analysis of conversational agents.
Related papers
- Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - A Transformer with Stack Attention [84.18399019794036]
We propose augmenting transformer-based language models with a differentiable, stack-based attention mechanism.
Our stack-based attention mechanism can be incorporated into any transformer-based language model and adds a level of interpretability to the model.
We show that the addition of our stack-based attention mechanism enables the transformer to model some, but not all, deterministic context-free languages.
arXiv Detail & Related papers (2024-05-07T17:47:57Z) - Transformer Mechanisms Mimic Frontostriatal Gating Operations When
Trained on Human Working Memory Tasks [19.574270595733502]
We analyze the mechanisms that emerge within a vanilla attention-only Transformer trained on a simple sequence modeling task.
We find that, as a result of training, the self-attention mechanism within the Transformer specializes in a way that mirrors the input and output gating mechanisms.
arXiv Detail & Related papers (2024-02-13T04:28:43Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - Reshaping Robot Trajectories Using Natural Language Commands: A Study of
Multi-Modal Data Alignment Using Transformers [33.7939079214046]
We provide a flexible language-based interface for human-robot collaboration.
We take advantage of recent advancements in the field of large language models to encode the user command.
We train the model using imitation learning over a dataset containing robot trajectories modified by language commands.
arXiv Detail & Related papers (2022-03-25T01:36:56Z) - Language Model-Based Paired Variational Autoencoders for Robotic Language Learning [18.851256771007748]
Similar to human infants, artificial agents can learn language while interacting with their environment.
We present a neural model that bidirectionally binds robot actions and their language descriptions in a simple object manipulation scenario.
Next, we introduce PVAE-BERT, which equips the model with a pretrained large-scale language model.
arXiv Detail & Related papers (2022-01-17T10:05:26Z) - Thinking Like Transformers [64.96770952820691]
We propose a computational model for the transformer-encoder in the form of a programming language.
We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer.
We provide RASP programs for histograms, sorting, and Dyck-languages.
arXiv Detail & Related papers (2021-06-13T13:04:46Z) - Auto-tagging of Short Conversational Sentences using Natural Language
Processing Methods [0.0]
We manually tagged approximately 14 thousand visitor inputs into ten basic categories.
We considered three different state-of-the-art models and reported their auto-tagging capabilities.
Implementation of the models used in these experiments can be cloned from our GitHub repository and tested for similar auto-tagging problems without much effort.
arXiv Detail & Related papers (2021-06-09T10:14:05Z) - Transformers with Competitive Ensembles of Independent Mechanisms [97.93090139318294]
We propose a new Transformer layer which divides the hidden representation and parameters into multiple mechanisms, which only exchange information through attention.
We study TIM on a large-scale BERT model, on the Image Transformer, and on speech enhancement and find evidence for semantically meaningful specialization as well as improved performance.
arXiv Detail & Related papers (2021-02-27T21:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.