Exploring the Potentials and Challenges of Deep Generative Models in Product Design Conception
- URL: http://arxiv.org/abs/2407.11104v1
- Date: Mon, 15 Jul 2024 14:28:50 GMT
- Title: Exploring the Potentials and Challenges of Deep Generative Models in Product Design Conception
- Authors: Phillip Mueller, Lars Mikelsons,
- Abstract summary: We analyze DGM-families (VAE, GAN, Diffusion, Transformer, Radiance Field), assessing their strengths, weaknesses, and general applicability for product design conception.
Our objective is to provide insights that simplify the decision-making process for engineers, helping them determine which method might be most effective for their specific challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The synthesis of product design concepts stands at the crux of early-phase development processes for technical products, traditionally posing an intricate interdisciplinary challenge. The application of deep learning methods, particularly Deep Generative Models (DGMs), holds the promise of automating and streamlining manual iterations and therefore introducing heightened levels of innovation and efficiency. However, DGMs have yet to be widely adopted into the synthesis of product design concepts. This paper aims to explore the reasons behind this limited application and derive the requirements for successful integration of these technologies. We systematically analyze DGM-families (VAE, GAN, Diffusion, Transformer, Radiance Field), assessing their strengths, weaknesses, and general applicability for product design conception. Our objective is to provide insights that simplify the decision-making process for engineers, helping them determine which method might be most effective for their specific challenges. Recognizing the rapid evolution of this field, we hope that our analysis contributes to a fundamental understanding and guides practitioners towards the most promising approaches. This work seeks not only to illuminate current challenges but also to propose potential solutions, thereby offering a clear roadmap for leveraging DGMs in the realm of product design conception.
Related papers
- Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Deep Generative Design for Mass Production [17.60251862841578]
We introduce an innovative framework addressing manufacturability concerns by integrating constraints pertinent to die casting and injection molding into Generative Design.
This method simplifies intricate 3D geometries into manufacturable profiles, removing unfeasible features such as non-manufacturable overhangs.
We further enhance this approach by adopting an advanced 2D generative model, which offer a more efficient alternative to traditional 3D shape generation methods.
arXiv Detail & Related papers (2024-03-16T01:32:00Z) - AutoTRIZ: Artificial Ideation with TRIZ and Large Language Models [2.7624021966289605]
Theory of Inventive Problem Solving is widely applied for systematic innovation.
The complexity of TRIZ resources and concepts, coupled with its reliance on users' knowledge, experience, and reasoning capabilities, limits its practicality.
This paper proposes AutoTRIZ, an artificial ideation tool that uses LLMs to automate and enhance the TRIZ methodology.
arXiv Detail & Related papers (2024-03-13T02:53:36Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
We argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains.
In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability.
arXiv Detail & Related papers (2024-02-28T15:19:33Z) - Content-Centric Prototyping of Generative AI Applications: Emerging
Approaches and Challenges in Collaborative Software Teams [2.369736515233951]
Our work aims to understand how collaborative software teams set up and apply design guidelines and values, iteratively prototype prompts, and evaluate prompts to achieve desired outcomes.
Our findings reveal a content-centric prototyping approach in which teams begin with the content they want to generate, then identify specific attributes, constraints, and values, and explore methods to give users the ability to influence and interact with those attributes.
arXiv Detail & Related papers (2024-02-27T17:56:10Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Review of Large Vision Models and Visual Prompt Engineering [50.63394642549947]
Review aims to summarize the methods employed in the computer vision domain for large vision models and visual prompt engineering.
We present influential large models in the visual domain and a range of prompt engineering methods employed on these models.
arXiv Detail & Related papers (2023-07-03T08:48:49Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Problem examination for AI methods in product design [4.020523898765404]
This paper first clarifies important terms and concepts for the interdisciplinary domain of AI methods in product design.
A key contribution is a new classification of design problems using the four characteristics decomposability, inter-dependencies, innovation and creativity.
Early mappings of these concepts to AI solutions are sketched and verified using design examples.
arXiv Detail & Related papers (2022-01-19T15:19:29Z) - Deep Generative Models in Engineering Design: A Review [1.933681537640272]
We present a review and analysis of Deep Generative Learning models in engineering design.
Recent DGMs have shown promising results in design applications like structural optimization, materials design, and shape synthesis.
arXiv Detail & Related papers (2021-10-21T02:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.