Almost-linear Time Approximation Algorithm to Euclidean $k$-median and $k$-means
- URL: http://arxiv.org/abs/2407.11217v1
- Date: Mon, 15 Jul 2024 20:04:06 GMT
- Title: Almost-linear Time Approximation Algorithm to Euclidean $k$-median and $k$-means
- Authors: Max Dupré la Tour, David Saulpic,
- Abstract summary: We focus on the Euclidean $k$-median and $k$-means problems, two of the standard ways to model the task of clustering.
In this paper, we almost answer this question by presenting an almost linear-time algorithm to compute a constant-factor approximation.
- Score: 4.271492285528115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering is one of the staples of data analysis and unsupervised learning. As such, clustering algorithms are often used on massive data sets, and they need to be extremely fast. We focus on the Euclidean $k$-median and $k$-means problems, two of the standard ways to model the task of clustering. For these, the go-to algorithm is $k$-means++, which yields an $O(\log k)$-approximation in time $\tilde O(nkd)$. While it is possible to improve either the approximation factor [Lattanzi and Sohler, ICML19] or the running time [Cohen-Addad et al., NeurIPS 20], it is unknown how precise a linear-time algorithm can be. In this paper, we almost answer this question by presenting an almost linear-time algorithm to compute a constant-factor approximation.
Related papers
- A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Simple, Scalable and Effective Clustering via One-Dimensional
Projections [10.807367640692021]
Clustering is a fundamental problem in unsupervised machine learning with many applications in data analysis.
We introduce a simple randomized clustering algorithm that provably runs in expected time $O(mathrmnnz(X) + nlog n)$ for arbitrary $k$.
We prove that our algorithm achieves approximation ratio $smashwidetildeO(k4)$ on any input dataset for the $k$-means objective.
arXiv Detail & Related papers (2023-10-25T16:37:45Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Near-Optimal Quantum Coreset Construction Algorithms for Clustering [15.513270929560088]
We give quantum algorithms that find coresets for $k$-clustering in $mathbbRd$ with $tildeO(sqrtnkd3/2)$ query complexity.
Our coreset reduces the input size from $n$ to $mathrmpoly(kepsilon-1d)$, so that existing $alpha$-approximation algorithms for clustering can run on top of it.
arXiv Detail & Related papers (2023-06-05T12:22:46Z) - A Faster $k$-means++ Algorithm [11.428775569173638]
We present a new algorithm that can solve the $k$-means++ problem with nearly optimal running time.
We propose a new algorithm textscFastKmeans++ that only takes in $widetildeO(nd + nk2)$ time, in total.
arXiv Detail & Related papers (2022-11-28T08:17:12Z) - Sublinear Time and Space Algorithms for Correlation Clustering via
Sparse-Dense Decompositions [9.29659220237395]
We present a new approach for solving (minimum disagreement) correlation clustering.
We obtain sublinear algorithms with highly efficient time and space complexity.
The main ingredient of our approach is a novel connection to sparse-dense graph decompositions.
arXiv Detail & Related papers (2021-09-29T16:25:02Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time [1.5644420658691407]
We study the widely used hierarchical agglomerative clustering (HAC) algorithm on edge-weighted graphs.
We define an algorithmic framework for hierarchical agglomerative graph clustering.
We show that our approach can speed up clustering of point datasets by a factor of 20.7--76.5x.
arXiv Detail & Related papers (2021-06-10T09:29:05Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
The fuzzy or soft objective is a popular generalization of the well-known $k$-means problem.
We show that by making few queries, the problem becomes easier to solve.
arXiv Detail & Related papers (2021-06-04T02:32:26Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.