Enhancing Multi-Step Brent Oil Price Forecasting with Ensemble Multi-Scenario Bi-GRU Networks
- URL: http://arxiv.org/abs/2407.11267v1
- Date: Mon, 15 Jul 2024 22:21:17 GMT
- Title: Enhancing Multi-Step Brent Oil Price Forecasting with Ensemble Multi-Scenario Bi-GRU Networks
- Authors: Mohammed Alruqimi, Luca Di Persio,
- Abstract summary: We introduce an ensemble model to capture Brent oil price volatility and enhance the multi-step prediction.
Our methodology employs a two-pronged approach. First, we assess popular deep-learning models and the impact of various external factors on forecasting accuracy.
Our approach generates accurate forecasts by employing ensemble techniques across multiple forecasting scenarios using three BI-GRU networks.
- Score: 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite numerous research efforts in applying deep learning to time series forecasting, achieving high accuracy in multi-step predictions for volatile time series like crude oil prices remains a significant challenge. Moreover, most existing approaches primarily focus on one-step forecasting, and the performance often varies depending on the dataset and specific case study. In this paper, we introduce an ensemble model to capture Brent oil price volatility and enhance the multi-step prediction. Our methodology employs a two-pronged approach. First, we assess popular deep-learning models and the impact of various external factors on forecasting accuracy. Then, we introduce an ensemble multi-step forecasting model for Brent oil prices. Our approach generates accurate forecasts by employing ensemble techniques across multiple forecasting scenarios using three BI-GRU networks.Extensive experiments were conducted on a dataset encompassing the COVID-19 pandemic period, which had a significant impact on energy markets. The proposed model's performance was evaluated using the standard evaluation metrics of MAE, MSE, and RMSE. The results demonstrate that the proposed model outperforms benchmark and established models.
Related papers
- Enhancing Multistep Brent Oil Price Forecasting with a Multi-Aspect Metaheuristic Optimization Approach and Ensemble Deep Learning Models [1.03590082373586]
We propose a hybrid approach combining metaheuristic optimisation and an ensemble of five popular neural network architectures.
We exploit the GWO metaheuristic optimiser at four levels: feature selection, data preparation, model training, and forecast blending.
The proposed approach has been evaluated for forecasting three-ahead days using real-world Brent crude oil price data.
arXiv Detail & Related papers (2024-07-15T22:27:14Z) - PredBench: Benchmarking Spatio-Temporal Prediction across Diverse Disciplines [86.36060279469304]
We introduce PredBench, a benchmark tailored for the holistic evaluation of prediction-temporal networks.
This benchmark integrates 12 widely adopted methods with diverse datasets across multiple application domains.
Its multi-dimensional evaluation framework broadens the analysis with a comprehensive set of metrics.
arXiv Detail & Related papers (2024-07-11T11:51:36Z) - Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens [10.103561529332184]
We focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions.
We introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models.
arXiv Detail & Related papers (2024-06-12T17:39:16Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Modeling Volatility and Dependence of European Carbon and Energy Prices [0.0]
We study the prices of European Emission Allowances (EUA)
We propose a probabilistic conditional time series model that exploits key characteristics of the data.
We discuss our findings focusing on volatility spillovers and time-varying correlations, also in view of the Russian invasion of Ukraine.
arXiv Detail & Related papers (2022-08-30T14:50:25Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
We investigate ensembling techniques in forecasting and examine their potential for use in nonseasonal time-series.
We propose using late data fusion, using a stacked ensemble of two forecasting models and two meta-features that prove their predictive power during a preliminary forecasting stage.
arXiv Detail & Related papers (2021-08-19T14:44:46Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
Recent studies have shown that the hourly German Intraday Continuous Market is weak-form efficient.
A probabilistic forecasting of the hourly intraday electricity prices is performed by simulating trajectories in every trading window.
The study aims to forecast the price distribution in the German Intraday Continuous Market in the last 3 hours of trading, but the approach allows for application to other continuous markets, especially in Europe.
arXiv Detail & Related papers (2020-05-04T10:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.